Special Issue on Fault Detection, Isolation, and Tolerant Control of Vehicles using Soft Computing Methods

Editorial
Fault Detection, Isolation, and Tolerant Control of Vehicles using Soft Computing Methods

Research on fault detection and isolation (FDI) and fault tolerant control (FTC), from both theoretical and practical aspects, has received more attention in recent years. The latest results confirm that there still remain some challenging areas within FTC/FTD on methodologies and computational complexities, as well as the implementation for a large domain of applications such as automobile, civil transportation airplanes, unmanned aerial vehicles, launch vehicles and satellites. Therefore, soft computing methods have attracted considerable attention from both the academic and industrial communities, emerging globally into various control applications. They have shown to be effective approaches for the FDI/FTC of many complex systems, including non-analytic systems. Moreover, numerous advanced ideas in FDI/FTC methodology, including neural network and fuzzy approaches, have been proposed. Among various model-based fuzzy-control strategies, the Takagi–Sugeno (T-S) method is extensively exploited for model-based nonlinear control designs. Indeed, significant efforts have been devoted to stability analysis, controller/observer design and FDI/FTC methods of these dynamic systems.

This Special Issue focuses on theoretical and practical aspects on new and emerging trends in FDI/FTC with vehicles applications using fuzzy logic and neural networks. It contains twelve papers, the contents of which are summarized below.

Jian et al. proposed a theoretical FTC framework for reconfigurable flight control in their paper entitled ‘Adaptive neural observer-based backstepping fault-tolerant control for near space vehicle under control effector damage’. Under this framework, two units are designed; one is an adaptive-based neural observer and the other is a reconfigurable controller which is based on an adaptive neural observer. A fault-tolerant control design based on the T-S fuzzy system models and terminal sliding mode control is investigated by Xu in his paper ‘Study of T-S fuzzy-based terminal–sliding–mode fault–tolerant control’. It is shown that this hybrid scheme can keep the advantages of both methods. Fan et al. studies the speed trajectory tracking problem of high-speed trains with actuator failures and unknown speed delays, as well as control input saturations, in their paper entitled ‘Iterative learning and adaptive fault-tolerant control with application to high-speed trains under unknown speed delays and control input saturations’. They propose a new adaptive iterative learning fault tolerant control strategy without the need for precise system parameters or analytically estimating bound on actuator failures variables. Shen et al. investigated the finite-time fuzzy-model-based reliable control problem for a class of nonlinear systems in their paper ‘Finite-time reliable $\mathcal{L}_2 – \mathcal{L}_\infty$ control for Takagi–Sugeno fuzzy systems with actuator faults’. The aim is to design a Markov switching fuzzy controller such that the resulting closed-loop system is stochastically finite-time bounded and satisfies a mixed disturbance attenuation over a finite time interval. Zhu and Xia studied the problem of fault detection for discrete systems with control inputs, unknown bounded disturbances and sensor faults in their paper entitled ‘Fault detection for discrete systems based on descriptor system method’. The paper aims to design an observer-based fault detection filter such that the error dynamic system is convergent; the effect of the disturbances on the residuals satisfies the H_∞ performance index; and the effect of the faults on the residuals satisfies the H_∞ performance index.

From an application point of view, Wang et al. proposed a passive FT control scheme for over-actuated systems to preserve the closed-loop stability in spite of different types of actuator faults in their paper ‘Linear parameter-varying based fault-tolerant controller design for a class of over-actuated nonlinear systems with applications to electric vehicles’. It is shown that the designed FT controller has no limitation on the control effect distribution ratios for the actual control effects, which allows the control system to distribute the higher-level control efforts to the lower-level actuators without using a control allocation algorithm. Zhao et al. proposed a novel approach for fault-tolerant flight control systems in their paper entitled ‘Modeling and fault tolerant control for near space vehicles with vertical tail loss’. This paper mainly solved two key problems: it first establishes an analytical model for a damaged vertical tail; and secondly, in light of the damaged model, a RBF NN backstepping controller, which could greatly reduce the possibility of catastrophic accidents, is designed.

Aouaouda et al. investigated the issues of the descriptor approach and multiple Lyapunov functions leading to strict LMIs based on robust fault estimation and a fault tolerant controllers design for the class of continuous-time disturbed T-S systems In their paper entitled ‘Robust static output feedback controller design against sensor failure for vehicle
dynamics’. It is demonstrated, through a vehicle nonlinear model, how this modeling approach is effective to deal with unmeasured premise variables for FTC design.

Li et al. studied the problem of output-feedback H_{∞} control for T-S fuzzy systems with input time-varying delay in their paper ‘Fuzzy output-feedback control for nonlinear systems with input time-varying delay’. Firstly, a new type of dynamic output-feedback controller is constructed for fuzzy systems with input time-varying delay. Secondly, using the Lyapunov stability theory, a condition with H_{∞} performance is developed. Sun et al. proposed a fault tolerant control approach to deal with the problem of fault accommodation for unknown actuator failures of active suspension systems in their paper entitled ‘Reliability control for uncertain half-car active suspension systems with possible actuator faults’. Also, the generalised H_2 fault detection problem for a class of discrete-time switched systems with repeated scalar nonlinearities is investigated by Zheng et al. in their paper ‘Fault detection of switched systems with repeated scalar nonlinearities’. Finally, in ‘Global consensus of single-integrator agents subject to saturation constraints’, Wang et al. studied the problem of leader-following consensus of single-integrator agents subject to saturation constraints.

While the selected topics and papers are not a comprehensive representation of the area of this Special Issue, they offer rich and multifaceted knowledge that we have the pleasure of sharing with readers.

Finally, we would like to thank all the authors for contributing submissions to the Special Issue and acknowledge all the reviewers for their voluntary work. We also thank the Editorial Office and Editor-in-Chief of IET Control Theory & Applications, for their great support to this project, without which, the completion of this work would not be possible.

Hamid Reza Karimi is a Professor in Mechatronics-Control Systems at the Faculty of Engineering and Science of the University of Agder in Norway. His research interests are in the areas of nonlinear systems, networked control systems, robust control/filter design, time-delay systems, wavelets and vibration control of flexible structures with an emphasis on applications in engineering.

Dr. Karimi is a senior member of IEE and serves as chairman of the Norway Section in the IEE chapter on control systems. He is also serving as an editorial board member for some international journals, such as IEE/ASME Transaction on Mechatronics, Information Sciences, IEEE ACCESS, IFAC Mechatronics, Neurocomputing, Asian Journal of Control, Journal of Franklin Institute, Journal of Systems and Control Engineering, and International Journal of Control, Automation and Systems. He is a member of the IEEE Technical Committee on Systems with Uncertainty, IFAC Technical Committee on Robust Control and IFAC Technical Committee on Automotive Control.

Mohammed Chadli received a Master’s degree (DEA) from the Engineering School INSA-Lyon in 1999, a PhD from the Centre de Recherche en Automatique de Nancy (CRAN), France, in 2002 and a habilitation in 2011 at the University of Picardie Jules Verne (UPJV) in Amiens, France. From 1999 to 2004, he was an Assistant Professor at CRAN-INPL (Institut National Polytechnique de Lorraine). Since 2004, he has been an Associate Professor at the UPJV-MIS (Modélisation, Information & Systèmes laboratory) in France. He was a visiting professor at the Technical University of Ostrava-Czech Republic and University of Agder-Norway.

Dr Chadli’s research interests include, on the theoretical side, robust control of fuzzy/LPV and switched systems, singular systems, FDI, FTC via LMI and Lyapunov methods. On the application side he is mainly interested in automotive control and renewable energy. He is an author/co-author of 4 books (Wiley, Hermes), book chapters and numerous articles published in international journals and conferences. Dr. Chadli is a senior member of IEEE, he is serving as an Editorial Board member for various peer-reviewed journals including IET-CTA, Asian Journal of Control, etc., and has been a Guest Editor for Special Issues in international journals.

Peng Shi received a BSc degree in Mathematics from Harbin Institute of Technology, China; a ME degree in Systems Engineering from Harbin Engineering University, China; a PhD degree in Electrical Engineering from the University of South Australia; and a DSc degree from the University of Glamorgan, UK. Dr Shi was a post-doctorate and lecturer at the University of South Australia; a senior scientist in the Defence Science and Technology Organisation, Australia; and a professor at the University of Glamorgan, UK. Now, he is a professor at The University of Adelaide, and Victoria University, Australia.

Dr Shi’s research interests include system and control theory, computational intelligence, and operational research. Dr Shi is a Fellow of the Institution of Engineering and Technology, and a Fellow of the Institute of Mathematics and its Applications. He has been in the editorial board of a number of journals, including Automatica, IEEE Transactions on Automatic Control; IEEE Transactions on Fuzzy Systems; IEEE Transactions on Cybernetics; IEEE Transactions on Circuits and Systems-I; and IEEE Access.
Lixian Zhang (M’10) received a PhD. degree in control science and engineering from Harbin Institute of Technology, China, in 2006. From January 2007 to September 2008, Dr. Zhang worked as a postdoctoral fellow in the Department of Mechanical Engineering at Ecole Polytechnique de Montreal, Canada. He was a Sino-British Fellowship Trust visiting scholar in The University of Hong Kong between July 2009 to October 2009, and a visiting scholar at Process Systems Engineering Laboratory, Massachusetts Institute of Technology (MIT) during February 2012 to March 2013. Since January 2009, he has been with the Harbin Institute of Technology, China, where he is currently a Professor in the Research Institute of Intelligent Control and Systems.

Dr. Zhang’s research interests include nondeterministic and stochastic switched systems, networked control systems, model predictive control and their applications. He serves as an Associated Editor for various peer-reviewed journals including IEEE Transactions on Cybernetics, and was a leading Guest Editor for the Special Section of “Advances in Theories and Industrial Applications of Networked Control Systems” in IEEE Transactions on Industrial Informatics.