Analytical and learning-based spectrum sensing time optimisation in cognitive radio systems

Hossein Shokri-Ghadikolaei, Younes Abdi, Masoumeh Nasiri-Kenari

Wireless Research Laboratory, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
E-mail: mnasiri@sharif.edu

Abstract: In this study, the average throughput maximisation of a secondary user (SU) by optimising its spectrum sensing time is formulated, assuming that a priori knowledge of the presence and absence probabilities of the primary users (PUs) is available. The energy consumed to find a transmission opportunity is evaluated, and a discussion on the impacts of the number of PUs on SU throughput and consumed energy are presented. To avoid the challenges associated with the analytical method, as a second solution, a systematic adaptive neural network-based sensing time optimisation approach is also proposed. The proposed scheme is able to find the optimum value of the channel sensing time without any prior knowledge or assumption about the wireless environment. The structure, performance and cooperation of the artificial neural networks used in the proposed method are explained in detail, and a set of illustrative simulation results is presented to validate the analytical results as well as the performance of the proposed learning-based optimisation scheme.

1 Introduction

Intense public interest in new wireless technologies has motivated communication system designers and policy makers worldwide to revolutionise traditional inefficient spectrum management mechanisms and develop advanced flexible scenarios for better spectrum utilisation, see [1]. These efforts have revealed that the old strategy of giving the exclusive right of using particular spectrum bands to some specific users (licensees) makes this valuable resource severely under-utilised. Fortunately, the concept of cognitive radio (CR) has emerged to mitigate this issue. In fact, CRs are intended to find transmission opportunities in wireless environment when no particular spectrum has been assigned to them. To protect primary users (PUs) from harmful interference, CRs have to be capable of sensing the radio spectrum, learning and adapting to the wireless environment [2].

Spectrum sensing schemes are of major importance in designing superior CR systems. The average throughput of the secondary users (SUs), their consumed energy and the amount of interference experienced by PUs are directly related to the effectiveness of the sensing schemes incorporated in CRs. Slotted CRs usually divide their time-slots into two parts; one for sensing and the other for data transmission [3, 4]. Sensing time refers to the portion of time-slots used for sensing the radio spectrum. Generally speaking, increasing the sensing time leads to higher sensing accuracy but decreases the average CR throughput [4, 5]. Hence, it is certainly a challenge to find an optimal value for the spectrum sensing time to have the maximum possible throughput while protecting PUs from harmful interference [3]. On the other hand, because of the dynamic behaviour of the PUs, the number and location of the temporarily-available transmission opportunities in the radio spectrum change occasionally. This behaviour is modelled as spectrum mobility and when it is taken into account, the aforementioned sensing time optimisation problem becomes even more challenging. Since the distribution of white spaces changes because of spectrum mobility, CRs have to handoff spectrums in order to maintain a predefined quality-of-service level. In other words, the SU must leave its current spectrum and continue its transmission on another spectrum when the corresponding PU arrives. This process is called spectrum hand-over or simply hand-over (HO).

In recent years, throughput maximisation by optimising spectrum sensing time has gained a lot of interest. In [5], the impact of spectrum sensing time on the overall throughput of an SU is investigated, and the optimum value of the sensing time has been found numerically. In [6], two distributed Q-learning algorithms have been proposed to determine the optimum value of sensing time. Joint optimisations of sensing time and decision threshold have been addressed in [7] for wideband OFDM-based cognitive radio networks (CRNs). However, none of these works have considered the effect of spectrum mobility and consequent HOs in their utilised CR system models. In [8–10], the problem of sequential channel sensing for an SU has been evaluated. Sequential channel sensing means that the SU starts sensing the channels from top of a list (called sensing sequence), and if the considered channel is sensed as occupied, the SU senses the next one and this process is continued until an idle spectrum is found. Based on this assumption, an optimisation problem is formulated in [8] in order to minimise the average sensing time. The false
detection and spectrum HO effects on sensing time have been investigated in [8]; however the adverse effect of the HO (the sensing time effect) on SU throughput has not been considered. The impact of sensing time on the average achievable throughput in sequential sensing scheme has been partially studied in [9, 10].

In this paper, two independent solutions are proposed for this problem. In the first proposed method, spectrum sensing time optimisation of a CR system is investigated analytically. Specifically, the throughput of an SU is clearly formulated in terms of sensing time when the spectrum mobility and consequent HO are taken into account. Moreover, the energy cost of HO is considered in the proposed modelling in order to address the energy-throughput tradeoff encountered in designing portable and/or green CR systems. In other words, the tradeoff between the maximum achievable throughput and the sensing energy consumption is explained and a design parameter is introduced to modify the optimisation problem to address the consumed energy.

The optimum value of sensing time derived through conventional analytical optimisation procedures depends directly on the models adopted for the channel, the users’ traffic and the PUs’ behaviour. Despite the increased analytical complexity associated with using more complete modelling, these models are not necessarily consistent with the actual environments in which the CRs work; and therefore the derived values cannot be considered as the perfect optimum ones. Moreover, if any changes occur in the parameters describing the wireless environment and traffic conditions experienced by the SUs, it is required to estimate the new parameters, repeat the analysis and recalculate the optimum values of sensing time. To deal with these issues appropriately, we propose a second method which is based on systematic configuration of two kinds of well-known artificial neural networks. Specifically, a multilayer feed-forward (MFF) neural network [11] is used to replace the mathematical modelling, which learns the actual behaviour of the secondary link, that is, the effect of spectrum sensing time on average throughput of the SU. Based on the actual (non-analytical) model of the link which is learned by the MFF network, a Kennedy-Chua (KC) neural network [12] is used to find the optimum value of spectrum sensing time. This learning-based optimisation scheme has several advantages over the analytical method. First, no prior knowledge about link behaviour, such as the presence or absence probabilities of PUs are required. Second, the limited consistency of the mathematical models with the real wireless environment does not affect the optimality of the derived spectrum sensing time. Third, using this learning-based optimisation scheme, an adaptive system is proposed which is capable of effectively following the variations in the link and keeping the average throughput at the maximum level in non-stationary conditions.

The main reason for selecting the MFF and the KC networks in our proposed scheme is that these networks can efficiently learn unknown mappings and optimise general non-linear programming problems. More specifically, Hornik et al. [13, 14] have shown that an MFF neural network with as few as a single hidden layer and an appropriately smooth hidden layer activation function is capable of providing arbitrarily accurate approximation of almost any given function and its derivatives, which enables the proposed scheme to learn the effect of spectrum sensing time on average throughput of the SU. On the other hand, the KC neural network, which is an advanced version of the classical Hopfield neural network [15], is capable of effectively solving general non-linear programming problems in a very short period of time, without any need of computationally demanding iterative procedures [12]. This neural network is entirely made of simple electronic devices such as capacitors, resistors and operational amplifiers, and is also suitable for implementation in a very large scale integration technology [16]. Furthermore, the stability of its solution is analytically guaranteed [12]. Owing to these benefits, it has been widely used in high-performance low-complexity adaptive communication systems, see [16–18] and references therein.

The rest of this paper is organised as follows. In Section 2, we describe the considered CR system model and derive the related optimisation problem. In Section 3, the utilised neural networks as well as the proposed learning-based sensing time optimisation scheme are introduced. Numerical results are then presented in Section 4, followed by concluding remarks in Section 5.

2 System model and the related optimisation problem

2.1 System model

We assume a primary network with \(N_p\) users, each of them with a dedicated channel, and also a single SU. The SU utilises narrow-band spectrum sensing, that is, it senses only one spectrum (out of \(N_p\) spectrums) at a time. Hence, the maximum possible transmission opportunities obtained after each sensing phase are one. We assume that the SU always has packets to transmit, that is, the SU starts its transmission when an opportunity is found. The SU senses the channels in an order determined by its sensing sequence. If the sensed channel is busy, the SU does not start its transmission and keeps trying to sense the next spectrum indicated in its sensing sequence. Assume that it takes a constant time \(\tau_{ho}\) for the SU to do an HO. \(\tau_{ho}\) does not depend on the amount of frequency shift required by the reconfiguration. The state of channel \(k\) is denoted by \(s_k\):

\[
s_k = \begin{cases}
1: & \text{if channel } k \text{ is occupied, or } \mathcal{H}_1 \\
0: & \text{if channel } k \text{ is idle, or } \mathcal{H}_0
\end{cases}
\]

(1)

where \(\mathcal{H}_0\) and \(\mathcal{H}_1\) represent the absence and presence hypotheses of the \(i\)th PU, respectively. Spectrum sensing can be formulated as a binary hypothesis testing problem [5]

\[
\begin{align*}
\mathcal{H}_0: & \quad y(n) = z(n): \text{channel is idle} \\
\mathcal{H}_1: & \quad y(n) = u(n) + z(n): \text{channel is occupied}
\end{align*}
\]

(2)

where \(z(n)\) denote samples of zero mean complex-valued Gaussian noise with independent and identical distributions (i.i.d.), \(u(n)\) denotes the PUs signal which is independent of \(z(n)\) and \(y(n)\) is the \(n\)th sample of the received signal.

We consider the energy detector (ED) method for PU detection in which the energy of the received signal is computed during a sensing time \(\tau\), and then the result is compared with a predefined threshold to take the decision [3]. Let \(N\) denote the number of samples of the received signal, that is, \(N = \tau f_s\), where \(\tau\) is the sensing time and \(f_s\) is the sampling frequency. By defining \(X\) as a decision metric
for the ED scheme, we have
\[X = \sum_{n=1}^{N} |y(n)|^2 \] (3)

Let \(\lambda \) denote the threshold of the ED decision rule. Then
\[
\begin{cases}
X < \lambda = \mathcal{H}_0 \\
X \geq \lambda = \mathcal{H}_1
\end{cases}
\] (4)

If \(N \) is large enough, \(X \) can be described by a Gaussian distribution [5]. Assume that \(P_{fa}, P_d \) and \(P_d^\min \) denote the false alarm probability, detection probability and minimum allowable detection probability (i.e. we must have \(P_d \geq P_d^\min \)), respectively. Then [5]
\[
P_{fa} = Q\left(\frac{\lambda}{\sigma_x^2} - 1 \right) \sqrt{\pi \tau_k} \] (5)
\[
P_d = Q\left(\frac{\lambda}{\sigma_x^2} - 1 - \gamma \right) \sqrt{\pi \tau_k} \] (6)

where \(\sigma_x^2 \) is the received energy of the PU signal and \(\sigma_x^2 \) is the noise variance. The received signal-to-noise ratio because of PU activity is \(\gamma = \sigma_x^2 / \sigma_n^2 \).

Taking (5) and (6) into account, for \(P_d = P_d^\min \) we have
\[
P_{fa} = Q\left[\beta + \gamma \sqrt{\pi \tau_k} \right] \] (7)

where \(\beta = Q^{-1}(P_d^\min) \sqrt{1 + 2\gamma} \).

2.2 Sensing time optimisation problem

We consider a sequential HO method [8] as described in the Introduction. Based on the energy detection scheme assumed, the \(i \)th channel is sensed as occupied with probability
\[
q_i = \text{Pr}\{\text{ED}_i = 1 | s_i = 0\} P_{i,0} + \text{Pr}\{\text{ED}_i = 1 | s_i = 1\} P_{i,1}
\] (8)

where \(\text{ED}_i \) is the output of the ED because of sensing of the \(i \)th channel. \(\text{ED}_i = 1 \) means that the CR has detected a PU on the \(i \)th channel whereas \(\text{ED}_i = 0 \) means that no PU has been detected. \(P_{i,0} \) and \(P_{i,1} \) are the absence and presence probabilities of the \(i \)th PU, respectively.

Let \(\alpha \) denote the maximum number of allowed HOs. \(\alpha \) is limited by two constraints. First, the number of sensed channels which cannot exceed the number of PUs. Second, the elapsed time for both sensing and HO procedures that cannot exceed the time-slot duration, \(T \). Therefore
\[
\alpha = \min\left(\frac{T - \tau}{\tau + \tau_{ho}} , N_p - 1 \right) \] (9)

Using the sequential spectrum sensing scheme, the SU transmits on channel \(i \) when \(i-1 \) consecutive handoff events occur, that is, when \(\text{ED}_k = 1 \) for all \(k < i \) and \(\text{ED}_i = 0 \). Clearly, because of possible sensing errors, the SU might mistakenly decide to transmit on a channel which has already been occupied by a PU. Therefore two maximum throughput levels are expected for an SU depending on the presence or absence of a PU on the adopted channel. We denote these two maximum throughput levels by \(C_1 \) and \(C_0 \) for the occupied and free channels, respectively. Using these definitions, the contribution of the \(i \)th channel on the overall maximum achievable throughput of the SU can be expressed as
\[
\mathcal{R}_i = C_0 T, \text{Pr}\{\text{ED}_i = 0 \text{ and } \text{ED}_k = 1 \text{ for } k < i \text{ and } s_i = 0\} + C_1 T, \text{Pr}\{\text{ED}_i = 0 \text{ and } \text{ED}_k = 1 \text{ for } k < i \text{ and } s_i = 1\}
\] (10)

where
\[
C_0 = \log_2 \left(1 + \gamma \right) \quad \text{and} \quad C_1 = \log_2 \left(1 + \frac{\gamma \gamma_p}{1 + \gamma \gamma_p} \right)
\]

respectively, are the SUs capacities under the hypotheses \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \). \(\gamma \) and \(\gamma_p \) are the received SNRs because of the secondary and PUs’ signals at the SU receiver, respectively. \(T_i \) is the fraction of time-slots remaining for data transmission after sensing \(i-1 \) channels occupied and is calculated as
\[
T_i = T - \tau - (i - 1)(\tau + \tau_{ho}) \quad \text{for} \quad i = 1, 2, \ldots, N_p
\] (11)

Although the random variables \(\text{ED}_k \), \(i = 1, 2, \ldots, N_p \), are mutually independent, each pair \(\text{ED}_i \) and \(s_i \) (the state of channel \(i \)) are related to each other based on the incorporated spectrum sensing algorithm which is characterised by \(P_{fa} \) and \(P_d \). Hence, (10) can be restated as
\[
\mathcal{R}_i = (C_0 T_i, \text{Pr}\{\text{ED}_i = 0 \text{ and } s_i = 0\}) + C_1 T_i, \text{Pr}\{\text{ED}_i = 0 \text{ and } s_i = 1\} \prod_{k=1}^{i-1} \text{Pr}\{\text{ED}_k = 1\}
\]
\[
= (C_0 T_i, \text{Pr}\{\text{ED}_i = 0 | s_i = 0\}) + C_1 T_i, \text{Pr}\{\text{ED}_i = 0 | s_i = 1\} \prod_{k=1}^{i-1} \text{Pr}\{\text{ED}_k = 1\}
\]
\[
= (C_0 T_i (1 - P_{fa}) P_{i,0} + C_1 T_i (1 - P_d) P_{i,1}) \prod_{k=1}^{i-1} q_k
\] (12)

where \(q_0, P_{i,0} \) and \(P_{i,1} \) are defined in (8). Finally, the aggregate maximum achievable throughput of the SU is derived by summing over all \(\mathcal{R}_i \), that is, for \(i = 1, 2, \ldots, \alpha \). Hence, the following proposition has been proved.

Proposition 1: The overall average throughput of a CR system which incorporates the energy detection and sequential spectrum sensing schemes to find transmission opportunities among \(N_p \) primary channels is
\[
R = \sum_{i=0}^{\alpha} q_0 q_1 \cdots q_i (C_0 P_{i,0} (1 - P_{fa}) + C_1 P_{i,1} (1 - P_d)) \frac{1 - \tau + i(\tau + \tau_{ho})}{T}
\] (13)

where \(q_0 \triangleq 1. \)
Considering (13), the optimum throughput can be obtained by solving the following optimisation problem P1

\[
P1: \max_{\tau, A} R \quad \text{s.t.} \quad \begin{align*}
P_f & \leq P_{f_{\text{max}}} \\
P_d & \geq P_{d_{\text{min}}} \\
0 & < \tau < T
\end{align*}
\]

(14)
The derived optimisation problem cannot be simplified to a one-dimensional (1D) one, as [5], without any preassumptions on \(P_f \) or \(P_d \). However, we can convert our 2D optimisation problem to a 1D one by using an acceptable value for the detection probability imposed by standards like 'IEEE 802.22'. Supposing \(P_d = P_{d_{\text{min}}} \), the optimisation problem is converted to

\[
P2: \max_{\tau, A} R \quad \text{s.t.} \quad \begin{align*}
P_f & \leq P_{f_{\text{max}}} \\
P_d & = P_{d_{\text{min}}} \\
0 & < \tau < T
\end{align*}
\]

(15)

Note that, under the assumption \(P_d = P_{d_{\text{min}}} \) and using (6), \(\lambda \) can be expressed in terms of \(\tau \) and as a result, the throughput of the SU derived in (13) only depends on \(\tau \). Moreover, based on the first constraint of (15) and from (7), we have \(Q[\beta + \gamma \sqrt{\frac{1}{\tau}}] \leq P_{f_{\text{max}}} \) which in turn leads to

\[
\tau \geq \frac{1}{f_s} \left(\frac{Q^{-1}(P_{f_{\text{max}}}) - \beta}{\gamma} \right)^2
\]

Therefore P2 can be simplified as

\[
P3: \max_{\tau} R \quad \text{s.t.} \quad \tau_{\text{min}} < \tau < T
\]

(16)

where

\[
\tau_{\text{min}} = \frac{1}{f_s} \left(\frac{Q^{-1}(P_{f_{\text{max}}}) - \beta}{\gamma} \right)^2
\]

2.3 Energy-throughput tradeoff

Recall that as defined in (8), \(q_i \) denotes the probability that the channel \(i \) is sensed busy. Thus, the probability of only one HO occurring in the system equals to \(q_1(1 - q_2) \). In the same way, the probability of performing exactly two HOS by the system equals to \(q_1q_2(1 - q_3) \) and so on. In other words, for the sequential HO method described, the probability of having \(i \) consecutive HOS and transmitting on the \((i+1)\)th channel is equal to \((1 - q_{i+1}) \prod_{k=1}^{i} q_k \). Hence, if we denote the average number of HOS required for finding a free transmission opportunity by \(\overline{g} \), we have

\[
\overline{g} = q_1(1 - q_2) + 2q_1q_2(1 - q_3) + \cdots + (\alpha - 1)(1 - q_\alpha) \prod_{j=1}^{\alpha-1} q_j + \alpha \prod_{j=1}^{\alpha} q_j
\]

(17)

where \(\alpha \) is defined in (9). Clearly, the average number of sensed channels equals to \(1 + \overline{g} \).

Assume that \(E_s(\tau) \) and \(E_c(\tau_{\text{ho}}) \) denote the consumed energies for sensing of each primary channel and for each HO, respectively. Hence, the average consumed energy for finding a transmission opportunity is computed

\[
E = (1 + \overline{g})E_s(\tau) + \overline{g}E_c(\tau_{\text{ho}})
\]

(18)
The processes of channel sensing and signal transmission consume more energy compared with the HO [19]. Therefore it is reasonable to ignore the second term \(\overline{g}E_c(\tau_{\text{ho}}) \) in (18) compared with the first one.

When the number of PUs increases, \(\alpha \) in (9) increases, and thus \(R \) and \((1 + \overline{g}) \) in (13) and (17) rise, consequently. Therefore increasing the number of PUs increases both the maximum achievable throughput and the number of sensed channels (equivalently the consumed energy). However, among these two metrics, the consumed energy increases more rapidly than the maximum throughput. To illustrate this phenomenon, in the following we consider a numerical example.

Fig. 1 shows the plot of the normalised energy consumed for finding a transmission opportunity [i.e. \((E/E_s)\)] which is equal to the number of sensed channels] against the maximum achievable throughput assuming \(P_{f_{\text{max}}} = 0.1, P_{d_{\text{min}}} = 0.9, T = 100 \text{ ms}, \tau_{\text{ho}} = 0.1 \text{ ms} \) and \(f_s = 6 \) MHz. The simulation setup procedure is described in Section 4. As illustrated, for high throughput values, increasing the consumed energy cannot improve the data rate significantly. In fact, since increasing the number of HOs reduces the time duration left for the transmission, the achievable data rate is not substantially improved. For instance, for \(N_p = 4 \) with the average number of sensed channels equal to 1.8757, the maximum data rate is 0.8544, whereas for \(N_p = 15 \) with the average sensed channels equal to 3.398, the maximum data rate is 0.8809. As a result, increasing the average number of sensed channels by 81% only leads to a near 3% increase in the maximum data rate. Therefore at the cost of a small reduction of the maximum throughput, the consumed energy can be substantially decreased. To take into account the energy consumption, in the following, we reformulate the optimisation problem.

At first, we show that \(R \) in (13) does not depend on the number of PUs for sufficiently large \(N_p \). If we rewrite \(R \), from (13) we have

\[
R(\tau, \lambda, N_p) = \sum_{m=0}^{\overline{g}} A_m(\tau, \lambda)B_m(\tau, \lambda)
\]

\[
A_m(\tau, \lambda) = C_mP_{m+1,1}(1 - P_{f_d}) + C_oP_{m+1,0}(1 - P_{f_a})
\]

\[
B_m(\tau, \lambda) = q_1 q_2 \cdots q_m (1 - \frac{\tau + m(\tau + \tau_{\text{ho}})}{T})
\]

\[
\alpha(\tau, N_p) = \min \left(\frac{T - \tau}{\tau + \tau_{\text{ho}}}, N_p - 1 \right)
\]

(19)

\(R(\tau, \lambda, N_p) \) is the throughput as a function of \(\tau, \lambda \) and \(N_p \). Considering the constraint of the derived optimisation problem imposed by sensing time, that is, \(\tau_{\text{min}} < \tau < T \) if \(N_p \geq \lceil((T - \tau_{\text{min}})/(\tau_{\text{ho}} + \tau_{\text{min}})) + 1 \rceil \), we have

\[
\alpha(\tau, N_p) = \frac{T - \tau}{\tau + \tau_{\text{ho}}}
\]

(20)
so

\[R(\tau, \lambda, N_p) = R(\tau, \lambda) \]
(21)

If we indicate the maximum achievable throughput of the SU by \(L \), from (21) we have

\[L = \max _{\tau} R(\tau, \lambda, N_p) = \left(\frac{T - \tau_{\min}}{\tau_{\min} + \tau_{ho,\lambda}} + 1 \right) = R(\tau, \lambda) \]
(22)

s.t. \(\tau_{\min} < \tau < T \)

To take into account the energy consumption, we define

\[\tau_{opt} = \arg \max _{\tau} R(\tau, \lambda, N_p) = \left(\frac{T - \tau_{\min}}{\tau_{\min} + \tau_{ho,\lambda}} + 1 \right) \]
(23)

s.t. \(\tau_{\min} < \tau < T \)

and the corresponding optimum number of HO is

\[\alpha_{opt} = \alpha_{|\tau=\tau_{opt}} \]
(24)

As stated above, at the throughput close to the maximum achievable one, that is, \(L \), defined in (22), by a small reduction of the throughput, the average energy consumption is substantially reduced. Now, let us define \(TF \) (0 \(\leq \) TF \(\leq \) 1) as a Tradeoff factor indicating the amount of throughput reduction considered. That is the target throughput is set as \(R_{TF} = TF \times L \). Then, from (22), the maximum number of HOs \(\pi(\pi \leq \alpha_{opt}) \) considering the energy consumption concern (reflected in the parameter TF) are obtained by solving the following equation:

\[TF = \sum _{m=0} ^{\pi} A_m(\tau, \lambda) B_m(\tau, \lambda) / L \]
(25)

That is from (22), \(L \) is calculated and by choosing a value for TF, \(\pi \) is obtained from (25). Finally, a new optimisation problem considering the consumed energy is formulated as

\[\max _{\tau} R_{TF} = \sum _{m=0} ^{h} \left(C_1 P_{m+1,1} (1 - P_d) + C_0 P_{m+1,0} (1 - P_{fa}) \right) \times q_0 q_1 \cdots q_m \left(1 - \frac{\tau + m(\tau + \tau_{ho,\lambda})}{T} \right) \]
(26)

s.t. \(\tau_{\min} < \tau < T \)

This new derived optimisation problem enables the SU to have control over the consumed energy and the achieved average throughput by the parameter TF.

3 Neural network-based optimisation scheme

3.1 Learning and optimisation

To recast the aforementioned optimisation problem in a suitable form for the learning-based optimisation scheme, first note that the proposed optimisation problem can be divided into two distinct parts. First, obtaining the mappings between \(\tau \) and \(R \) described by (13). Second, from (16), finding the optimum value for \(\tau \) using the derived mapping. In the proposed learning-based optimisation scheme, both of these parts are performed effectively using KC and MFF neural networks.

To restate the spectrum sensing time optimisation problem suitable for the KC neural network, we define our adaptable parameter \(x \), the cost function \(\phi \) and the constraint functions \(f_1 \) and \(f_2 \) as

\[x \triangleq \tau \]
\[\phi(x) \triangleq 1/R(x) \]
\[f_1(x) \triangleq T - x \]
\[f_2(x) \triangleq x - \tau_{\min} \]
(27)

Hence, from (16) and (27), the optimisation problem can be
rewritten as

\[x^{\text{opt}} = \arg\min_x \varphi(x) \]
\[\text{s.t.} \quad f_1(x) \geq 0 \]
\[f_2(x) \geq 0 \]

We collect the constraint functions and their derivatives in a matrix named \(F \) defined as

\[F = \begin{bmatrix} f_1(x) \\ f_1'(x) \\ f_2(x) \\ f_2'(x) \end{bmatrix} \]

The exploited MFF network has three layers, that is, one input layer, one hidden layer and one output layer. There is one neuron at the input layer, \(K \) neurons at the hidden layer and one neuron at the output layer. The proper value of \(K \) will be discussed in Section 4. The network input and output are \(x \) and the learned version of \(\phi(x) \) defined in (27), respectively. There is also one extra output corresponding to the sensitivity of the cost function, that is, \(\varphi/\delta x \) [20].

The output of the \(i \)th neuron at the \(l \)th layer is described as

\[u_i(l) = \sum_{j=1}^{N_l} w_{ij}(l) a_j(l-1) + b_i(l) \]

\[a_i(l) = h_i(u_i(l)), \quad 1 \leq i \leq N_l, \quad l = 1, 2 \]

where \(N_l \) is the number of neurons at the \(l \)th layer; and \(u_i(l) \) and \(a_i(l) \) are the activation and output values of the \(i \)th neuron at the \(l \)th layer. \(w_{ij}(l) \) refers to the weight connecting the output from the \(j \)th neuron at the \((l-1) \)th layer to the input of the \(i \)th neuron at the \(l \)th layer. \(b_i(l) \) refers to the bias associated with the \(i \)th neuron at the \(l \)th layer. The utilised transferring function \(h_i(\cdot) \) in (33) is logistic sigmoid at hidden layer \((l=1) \) and is hyperbolic tangent sigmoid at output layer \((l=2) \), that is

\[h_i(x) = \begin{cases} (1 + e^{-x})^{-1}, & l = 1 \\ 2(1 + e^{-2x})^{-1} - 1, & l = 2 \end{cases} \]

The input unit is demonstrated by \(a_i(0) \) and the output unit by \(a_i(2) \), so we have

\[x = a_i(0) \]
\[\hat{\varphi}(x) \triangleq a_i(2) \]

where \(\hat{\varphi} \) is the learned version of the cost function. We denote the set of weights and biases by the matrix \(w \). The MFF network can be trained to model the function \(\varphi \), by recursively adjusting \(w_{ij}(l) \) and \(b_i(l) \) to minimise the mean-squared error between the MFF network output \(\hat{\varphi} \) and our cost function \(\varphi \)

\[d = \frac{1}{2} \sum_{m=1}^{M} [\hat{\varphi}_m - \varphi_m]^2 \]

The KC neural network has one output voltage corresponding to the adaptable parameter \(x \). This network calculates the optimum sensing time based on the cost function learned by the MFF network. Now, if there exists a training process to adjust the weight and bias values of the MFF network appropriately and if the learned mapping approximates the actual cost function closely, then the KC network output is equal to the optimum value of \(x \) (i.e. the sensing time).

The dynamic equation implemented by the KC neural network is [12, 21]

\[C \frac{dx}{dt} = - \frac{\partial \hat{\varphi}}{\partial x} - \sum_{j=1}^{2} i_j \frac{\partial f_j}{\partial x} - G x \]

where \(i_j = g_j(f_j(x)) \), and \(C \) and \(G \) are the output capacitor and the parasitic conductance of the KC network, respectively, and \(g_j(\cdot) \) is defined as [12]

\[g_j(v) = \begin{cases} 0, & v \geq 0 \\ \frac{1}{R}, & v \leq 0 \end{cases} \quad R \to 0 \]

The proper values for \(C \) and \(G \) will be discussed later in Section 4.

3.2 Proposed scheme

Fig. 2 demonstrates the proposed neural network-based optimisation scheme. It consists of a KC neural network cooperating with an MFF neural network in a feedback loop, a training process which calculates and updates the weight and bias values of the MFF network, and a throughput estimator (TE).

The TE estimates the SU throughput and calculates the value of \(\varphi(x) \). This estimation can be performed by inspecting the packets and their acknowledgments (ACKs) at the secondary transmitter for a period of time equal to \(T_{sp} \) (estimation period) [22]. \(T_{sp} \), as a design parameter, depends on the PUs activity and link behaviour.

As mentioned before, the KC neural network has one output corresponding to \(x = \tau \). It calculates the optimum value for \(\tau \) based on the cost function provided by the MFF network \(\hat{\varphi}(x) \). Its output, even though not necessarily optimal at first, is always used by the ED as the channel sensing time. The learned mapping of the MFF network is considered as the cost function by the KC network. Specifically, this learned function, that is, \(\hat{\varphi}(x) \), and its derivative are used by the KC network to establish (38). Thus, the KC network output \(x \) will be sufficiently close to the optimum value provided that the function learned by the MFF network can model the link behaviour sufficiently accurately, that is, \(\hat{\varphi}(x) \simeq \varphi(x) \). Once the KC network
output x is applied to set the spectrum sensing time of the ED, the TE estimates the throughput obtained by this setting and calculates $\phi(x)$ within T_{ep} seconds. Then, the training process uses x as the input and the estimated $\phi(x)$ as the target to adjust the weight and bias values of the MFF network by the well-known backpropagation algorithm \[11\]. Having its weight and bias values modified, the MFF network models the link more accurately, and therefore the KC network output takes a new value closer to the optimal point x^{opt}. By iterating this learning and optimisation cycle, we observe a joint convergence in the weight and bias values w and more importantly in the KC network output x, which denotes the optimum value for τ, thanks to the universal approximation theorem \[14\].

To sum up, the proposed adaptive system works according to the following three-steps algorithm:

Step 1: Setting The KC network output x is applied to the ED to set its sensing time-duration.

Step 2: Throughput estimation The average throughput is estimated by inspecting the packets and their ACKs for T_{ep} seconds, and accordingly $j(x)$ is calculated.

Step 3: Training The KC network output x and the TE outputs $j(x)$ are used as an input-target pair to adjust the weights and biases of the MFF network, and then the process returns to Step 1.

Computational complexity of the proposed system is due to the backpropagation algorithm, whose order is $O(N)$, where N is the number of weights and biases of the MFF network \[11\]. For the examples considered in the numerical results section, nine hidden neurons were enough to well model the relationship between sensing time and SUs throughput. The MFF network with nine hidden neurons can be considered equivalently as an adaptive filter with $N = 1 \times 9 + 1 \times 9 + 10 = 28$ weights which are being updated by the LMS algorithm.

4 Numerical results

In this section, we evaluate the performance of the proposed schemes considering various parameters introduced throughout the paper. To this end, first an SU performing sequential channel sensing is simulated, and then by implementation of the MFF and KC networks, the performance of the proposed learning-based approach is evaluated. For numerical evaluations, the parameters are set as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{d\text{min}}^\text{min}$</td>
<td>minimum allowable detection probability</td>
<td>0.9</td>
</tr>
<tr>
<td>$P_{fa\text{max}}$</td>
<td>maximum allowable false alarm probability</td>
<td>0.1</td>
</tr>
<tr>
<td>f_s</td>
<td>receiver sampling frequency</td>
<td>6 MHz</td>
</tr>
<tr>
<td>T</td>
<td>time-slot duration</td>
<td>100 ms</td>
</tr>
<tr>
<td>τ_{req}</td>
<td>required time for HO</td>
<td>0.1 ms</td>
</tr>
<tr>
<td>N_p</td>
<td>number of PUs</td>
<td>15</td>
</tr>
<tr>
<td>K_h</td>
<td>number of hidden neurons</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>capacitances of KC network</td>
<td>10 nF</td>
</tr>
<tr>
<td>G</td>
<td>conductances of KC network</td>
<td>$0.001 \Omega^{-1}$</td>
</tr>
</tbody>
</table>

It is worth noting that the proposed learning-based optimisation scheme adapts the sensing time of spectrum sensing according to the variations in the statistics associated with the wireless environment. More specifically, the optimisation is based on the link throughput estimated by the TE, which according to the presented analysis is directly related to the average SNR, experienced by the CR nodes [see (5)–(8) and (13)], instead of instantaneous variations of the wireless media. That is, in the proposed scheme, the weights change according to variations of (a) average channel SNRs, which change far more slowly than the instantaneous values of the SNRs, and (b) PUs' presence probabilities, which do not change or changes slowly. Therefore considering its considerably low update rate, even though the proposed system is designed for links with a non-stationary behaviour, the computational complexity of the backpropagation algorithm, that is, $O(N)$, overall is not very substantial.
according to Table 1. The values of SNR and sampling frequency are adopted from [5], and P_{min} and P_{max} are chosen according to the 'IEEE 802.22' standard [23]. In simulation evaluations, the average throughput has been computed after simulating the scenario for 100 time slots.

As stated previously, the MFF network, exploited in the learning-based scheme, has three layers with one neuron at the input layer, K neurons at the hidden layer and one neuron at the output layer. As shown in [24], increasing the number of hidden neurons in an MFF network promotes its learning capability, and once satisfactory performance is obtained, further increasing the number of hidden neurons does not degrade the performance. Therefore as in [24, 25], the value of K (= 9) is chosen in our simulations as the minimum value which leads to a satisfactory performance (see Figs. 4–6). Moreover, to build a KC network, first, it must be noted that the values of C (capacitances) and G (conductances) do not prevent KC network outputs from the convergence to the optimum point [From the analyses provided in [12], it can be concluded that the values of C and G only affect the convergence speed of the KC network, which is negligible compared with the throughput estimation period and MMF training phases (see Fig. 6). Therefore those values have no considerable effects on the performance of the proposed system,] provided that C is strictly positive and G is very small. In practice, those very small conductances are realised using op-amps based active elements with high input impedances [12]. In the following numerical evaluations, the values of C and G are adopted from [16].

Fig. 3 verifies our analysis and depicts the achievable data rate versus the normalised sensing time [i.e. (τ/T)] for various values of N_p assuming that the presence probabilities of all the PUs are equal to 0.65. As observed, for large normalised sensing time, the plots for different values of N_p coincide. This behaviour is expected because of our previous discussions on the constraints which affect the number of possible HOs for an SU. As stated previously in Section 2,
the number of possible HOs is dictated by two factors; namely, N_p and the ratio $(T - \tau)/(\tau + \tau_{ho})$. Therefore as τ increases, we observe that the second factor dominates and regardless of the number of available primary channels N_p, the achieved throughput becomes limited to a value corresponding to a lower N_p. The throughput of the SU where there are 10 primary channels equals the throughput of the SU with 3 primary channels for approximately $\tau > 1/4T$. Other important observations can be made through Fig. 3. First, there exists an optimum value for the spectrum sensing time. Second, as the number of primary channels increases, the SU throughput increases as well, but in a saturating manner. This is due to the fact that as the number of primary channels increases, although the average number of obtained transmission opportunities increases, the average time-duration in which the SU transmits data reduces. Third, the importance and efficiency of having multiple HOs can be observed; the improvement in the throughput when using multiple HOs, that is, $N_p \geq ((T - \tau_{min})/(\tau_{min} + \tau_{ho})) + 1$, is about 44.5% compared with the case of $N_p = 1$, with no HO capability.

The effectiveness of the discussed energy-throughput tradeoff on the proposed sensing time optimisation scheme is demonstrated by Table 2. In this table, two design sets are presented namely Design 1 and Design 2. Design 1 is referred to the analytical optimisation that does not consider Fig. 6 Convergence of the output of the KC neural network to optimal sensing time using a learned model for secondary links with $N_p = 3$ and $N_p = 5$ primary channels.

Table 2 | SUs average throughput and normalised consumed energy (NCE) for $TF = 1$ in Design 1 (without considering energy-throughput tradeoff) and $TF = 0.98$ in Design 2 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Throughput</td>
<td>NCE</td>
<td>Throughput</td>
<td>NCE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>$N_p = 2$</td>
<td>0.775</td>
<td>1.3186</td>
<td>0.775</td>
<td>1.3186</td>
</tr>
<tr>
<td>$N_p = 6$</td>
<td>0.8723</td>
<td>2.3909</td>
<td>0.8660</td>
<td>2.1397</td>
</tr>
<tr>
<td>$N_p = 12$</td>
<td>0.8807</td>
<td>3.3080</td>
<td>0.8660</td>
<td>2.1397</td>
</tr>
</tbody>
</table>
the energy consumed by the SU, whereas in Design 2, the sensing time is optimised using the TF to obtain an energy-efficient sensing scheme. This table illustrates that considering energy-throughput tradeoff provides near maximum throughput for each N_p with much lower consumed energy (compared with Design 1). It is worth noting that the SU consumed energy can be very high when N_p is large. From Table 2, the proposed energy-efficient sensing time optimisation procedure reduces the consumed energy dramatically when the consumed energy concern is more serious, that is, when the number of primary channels is large. See the 65% reduction in consumed energy for Design 2 compared with Design 1 at the expense of only 2% reduction in the throughput when $N_p = 12$.

Figs. 4 and 5 demonstrate the performance of the proposed learning-based optimisation scheme. They compare the maximum normalised throughputs and the optimum sensing times of the learning-based optimisation scheme and analytical modelling. This comparison is performed for various numbers of primary channels, for the presence probabilities of the PUs given in Table 3. Results labeled as ‘Analysis’ depict the maximum normalised throughput and optimum sensing time obtained by the analytical modelling; and results labeled as ‘Learning-based’ are the ones obtained through the neural network-based optimisation.

As can be realised from Fig. 4, the average throughput values obtained by the proposed neural network-based optimisation method are very close to those obtained through mathematical analysis. Moreover, Fig. 5 shows that optimum sensing times calculated through our learning-based optimisation method are very close to the results obtained by the analysis.

Fig. 6 depicts the KC network output convergence to the optimal sensing time corresponding to secondary links with $N_p = 3$ and $N_p = 5$ primary channels. As shown in this figure, using the learned cost function provided by the MFF network, the KC output converges to the optimal sensing time very fast. Therefore we observe that if the learned function well-approximates the actual link model, the KC output represents the optimal value of the sensing time.

5 Conclusion

In this paper, we considered the problem of channel sensing time optimisation for a SU which senses the primary channels sequentially. Maximising the average throughput of the SU by optimising the spectrum sensing time was formulated assuming that a priori knowledge of the presence and absence probabilities of the PUs are available. Then, the energy-throughput tradeoff of a CR system was discussed using the derived expressions. Moreover, a learning-based sensing time optimisation approach was proposed using a novel and effective combination of two powerful and well-organised artificial neural networks. Finally, the validity of the analytical results as well as the capability of the proposed adaptive system in finding the optimal spectrum sensing time were demonstrated by a set of illustrative simulation results.

6 References

Table 3 Primary free probabilities

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{ok}</td>
<td>0.71</td>
<td>0.46</td>
<td>0.34</td>
<td>0.72</td>
<td>0.66</td>
<td>0.72</td>
<td>0.76</td>
<td>0.35</td>
<td>0.25</td>
<td>0.70</td>
<td>0.37</td>
<td>0.23</td>
<td>0.72</td>
<td>0.24</td>
<td>0.43</td>
</tr>
</tbody>
</table>