Bilateral photoplethysmography analysis for arteriovenous fistula dysfunction screening with fractional-order feature and cooperative game-based embedded detector

Jian-Xing Wu1, Chia-Hung Lin2, Ming-Jui Wu3, Chien-Ming Li4, Bee-Yen Lim5, Yi-Chun Du2

1National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, Taiwan
2Department of Electrical Engineering, Kao-Yuan University, Kaohsiung City 82151, Taiwan
3Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan City 71051, Taiwan
4Division of Infectious Diseases, Department of Medicine of Chi Mei Medical Center, Tainan City 71004, Taiwan
5Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan City 71005, Taiwan

E-mail: eechl53@gmail.com

Published in Healthcare Technology Letters; Received on 15th October 2014; Revised on 23rd February 2015; Accepted on 6th March 2015

The bilateral photoplethysmography (PPG) analysis for arteriovenous fistula (AVF) dysfunction screening with a fractional-order feature and a cooperative game (CG)-based embedded detector is proposed. The proposed detector uses a feature extraction method and a CG to evaluate the risk level for AVF dysfunction for patients undergoing haemodialysis treatment. A Sprott system is used to design a self-synchronisation error formulation to quantify the differences in the changes of blood volume for the sinister and dexter thumbs’ PPG signals. Bilateral PPGs exhibit a significant difference in rise time and amplitude, which is proportional to the degree of stenosis. A less parameterised CG model is then used to evaluate the risk level. The proposed detector is also studied using an embedded system and bilateral optical measurements. The experimental results show that the risk of AVF stenosis during haemodialysis treatment is detected earlier.

1. Introduction: Vascular access stenosis in patients with diabetes and long-term haemodialysis is widespread. The statistics for Taiwan show that 77,000 patients with end-stage renal disease (ESRD) regularly received haemodialysis treatment in 2013. Haemodialysis is conducted through an arteriovenous access (AVA) between an artery (radial) and a vein (cephalic), such as an arteriovenous fistula (AVF) or an arteriovenous graft (AVG). However, stenosis, failure and infection of an AVA lead to thrombosis, intimal hyperplasia and aneurysmal deformability, which results in repeated puncturing of the AVA. Volume flow thresholds of \(<600 \text{ ml/min} \) and \(<400–500 \text{ ml/min} \) are, respectively, considered to demonstrate a dysfunctional AVF or AVG [1, 2]. Haemodialysis treatment often results in access stenosis, infection and associated complications, including hypotension and sickness. Therefore this study proposes a non-invasive detector that can screen the degree of AVA stenosis, during haemodialysis treatment.

In the literature [3, 4], bilateral differences in transit time, amplitudes (AMPs) and pulse shapes for vascular diseases estimation are studied by comparing the sinister and dexter thumbs’ photoplethysmography (PPG) signals with the normative pulse ranges, as shown in Fig. 1a. When vascular access becomes stenosis on one side, the bilateral PPG pulses gradually become asynchronous, with each heartbeat. In addition, an AVA has significant inflow or outflow stenosis and there are decreases in the intra-flow. This abnormal and retrograde blood flow occurs in the peripheral artery and microcircular system of the ipsilateral hand and fingers, which results in so called arterial steal syndrome [5]. Therefore the ‘rising edge’ of each PPG pulse is a useful parameter of vascular compliance that is associated with changes in blood volume, intra-flow and resistance. Most AVF stenoses are caused by atherosclerosis, which leads to increased resistance in the conduit. Therefore changes in the AMPs of pulse waves and prolonged transit times are observed in bilateral PPG signals [3, 4, 6–8], such as rise time (RT), \(\text{ART} = |\text{RT}_R - \text{RT}_F| \), as shown in Fig. 1b, and also has highly correlation to the degree of stenosis (DOS) in this study.

To develop an early detector, researchers propose bilateral optical sensing, fractional-order extraction method and cooperative game (CG) screening model to give an on-line tool for physiological measurements. The Sprott system [9] has simple fractional-order differential equations and is used to construct a self-synchronisation error formulation (SSEF) [4, 6]. A SSEF is used to extract fractional-order dynamic errors (FODEs) with the bilateral PPG signals, to trace differences in both ARTs and AMPs [8]. A polynomial regression is used to perform a least square curve fitting the FODEs and DOS and to quantify the relationship between them. Based on the DOS, AVF dysfunction screening is then formulated as a CG model [10, 11], to provide a decision-making method for evaluating the risk of AVF stenosis. By comparison with the complexity mechanisms, such as support vector machines and artificial neural networks [4, 7, 8], the proposed CG model requires no assignment of an objective function and no optimisation methods to update network parameters. Its mechanism has general probability formulations to express the less parameterised decision reasoning and overcomes the complexity of adjustable mechanisms. The capability of combining the SSEF and CG model allows computers to perform reasoning in a more flexible manner and the prototype screening detector is also easy to implement in an embedded system.

2. Bilateral PPG measurement system: PPG is a non-invasive optical measurement technique that can be used to detect changes in blood volume and blood transport at different body sites, such as the earlobes, the index fingers, the thumbs and the big toes, either bilaterally or unilaterally [3, 4, 6]. A PPG signal carries information about cardiovascular regulation, changes in arterial pulsatile volume and endothelial function [12]. It can be used to evaluate the cardiovascular risk factors, atherosclerosis, arterial stiffness, the properties of arteries and hypertension. Previous studies [3, 4] have found that bilateral (right-to-left) or multi-site measurements increase significantly as the vascular disease gradually evolves. In this study, a PPG probe (transmission mode/reflection mode) that incorporates a light-emitting diode and a photo-detector was mounted within a thumb/finger clip, to
design a SSEF, as shown in Fig. 3, of a master system as a reference and a slave system, is used to bilateral PPG signals. Therefore a Sprott system, which consists error, is used to represent the differences in the RT and AMPs of system. A quantitative method, using the self-synchronisation fl

3.1. Fractional-order self-synchronisation error: If the in

3. Methodology description

For bilateral PPG measurements, two channels signals are syn-

error system becomes

\[\dot{\varepsilon} = Ae + 2[\text{sign}(y_{1m}) - \text{sign}(x_{1s})] \] (3)

If both \(y_{1m} \geq 0 \) or \(y_{1m} \) and \(x_{1s} < 0 \), \([\text{sign}(y_{1m}) - \text{sign}(x_{1s})] = 0\), hence a linear system is derived by decoupling variable \(e_3 \) from (3), which becomes

\[\begin{bmatrix} \dot{e}_2 \\ \dot{e}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b & -a \end{bmatrix} \begin{bmatrix} e_2 \\ e_3 \end{bmatrix} = \tilde{A}\varepsilon \] (4)

subject to system parameters, \(a > 0 \) and \(b > 0 \) [7, 8].

Figures

Figure 1 PPG measurement

* a Bilateral PPG measurement
* b Bilateral differences in rising edge of sinister and dexter thumbs’ PPG signals

detect the thumb’s microcirculation blood volume pulsations by temporal analysis of scattered optical radiation, as shown in Fig. 2a. Read and infrared (IR) wavelengths (680–940 nm) are better for measurement of blood flow in the microvascular bed of the tissue. Transmission mode monitors changes in the light intensity via read/IR light through the tissue. This technique allows the vasoconstriction and vasodilatation in vessels smaller than 2.5 mm in diameter to be easily perceived.

For bilateral PPG measurements, two channels signals are synchronously captured, at a sampling rate of 1 kHz (data acquisition controller), from the measurement system and passed to an embedded system (MSP430), which provides an analogue-to-digital (A/D) data transfer to a tablet PC for further analysis. The MSP430 also locates each pulse foot (PF) – PF interval, to acquire sampling data within a sampling window, as shown in Fig. 2b. This allows continuous measurement and temporal analysis during haemodialysis treatment.

Figure 2 PPG measurement technique

* a Bilateral PPG measurement system and prototype screening detector
* b PPG signal within sampling window

Figure 3 Fractional-order self-synchronisation error model

* a Block diagram of proposed screening model
* b Fractional-order feature patterns

The Institution of Engineering and Technology 2015
According to the Grünwald–Letnikov (GL) fractional approximation, a general fractional-order differentiation formulation can be expressed as [13]

$$\frac{d^\alpha e(t)}{dt^\alpha} = \lim_{\Delta t \to 0} \frac{e(t) - a e(t) - b e(t)}{(\Delta t)^\alpha}$$

If the parameter, \(0 < \alpha < 1\) and (5) defines the fractional rate of change of the function \(e(t)\), the fractional-order error dynamics of (4) can be simplified using the fractional-order derivatives, as

$$\begin{bmatrix} D^\alpha \epsilon_2 \\ D^\alpha \epsilon_3 \end{bmatrix} \approx \frac{1}{(\Delta t)^\alpha} \begin{bmatrix} \epsilon_2(t) \\ \epsilon_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ -\alpha \end{bmatrix} \left(\frac{\epsilon_2(t) - \epsilon(t)}{(\Delta t)^\alpha} \right)$$

where \((t-t_0)\) and \(t\) points are geometric approximations of the \(\alpha\)th derivative and the product of the slope between the curves and \((\Delta t)^\alpha\) is loosely a geometric interpretation of a part of the fractional derivative or fractional rate.

In this study, the fractional-order SSEF is used to extract FODEs from PPG signals. The discrete PPG signals from hands with arteriovenous malformation are referred to as \(v_i\) and \(x_i = v_i[i]\) and those from healthy hands are referred to as \(v_i\) and \(x_i = v_i[i+1]\) and \(y_{in} = v_i[i+1] \in [1, n-1]\). The fractional time, \(\Delta t\), is the number of sampling points, \(\Delta t = (i+1)-i\), \(i \in [1, n-1]\). Therefore (6) can be transformed to the following fractional-order SSEFs

$$\Phi_1[i] = \frac{1}{(\Delta t)^\alpha} (\epsilon_1[i] - a \epsilon_2[i - 1])$$

$$\Phi_2[i] = -b(\epsilon_2[i] + a \epsilon_3[i - 1])$$

where the error variables are \(\epsilon_2[i] = v_i[i] - v_{in}[i]\), \(\epsilon_3[i] = v_{in}[i+1] - v_{in}[i+1] - v_{in}[i - 1] = v_{in}[i] - v_{in}[i]\), \(i = 1, 2, 3, ..., n\) and the initial conditions are \(v_{in}[0] = v_{in}[0] = 0\).

3.2. Fractional-order feature patterns: FODEs, \(\Phi_1\) and \(\Phi_2\), are used as quantisers, to extract the FODEs using (7) and (8), as shown in Fig. 3b. The DOS is quantified, using the index, \(\Psi\), hence the norm of \((\Phi_1, \Phi_2)\) can be represented as

$$\Psi = \sqrt{\max \{\Phi_1[i]\}^2 + \max \{\Phi_2[i]\}^2}$$

where \(\max \{\Phi_1[i]\}, \Phi_1 \in \mathbb{R}^{n-1}\) and \(\max \{\Phi_2[i]\}\), \(\Phi_2 \in \mathbb{R}^{n-1}\). The DOS confirms the standard degrees from ultrasound imaging techniques, which is defined as [14]

$$\text{DOS} = \left(1 - \frac{\|D\|^2}{\|D^2\|^2}\right)$$

where \(D\) is the diameter of a normal vessel in the direction of blood flow and \(\delta\) is the diameter of the stenosis lesion. Therefore the values of the index, \(\Psi\), increase as the stenosis becomes worse, in the risk assessment for AVFs.

Equations (7) and (8) can also be expressed using integrators and the four fundamental arithmetical operations: adders, subtractors and multipliers. This study uses the fractional-order SSEFs in the feature extractor, using non-linear electronic circuits, such as operational amplifiers and RC circuits. Of these, an inverting or non-inverting closed-loop configuration with an infinite gain is used to implement a proportional-amplifier, to adjust the system parameters, \(a, aa, b\) and \(ab\). The sum of (7) and (8) is then completed by a summing amplifier circuit, by adjusting the closed-loop gain (the gain is unity).

3.3. CG-based screening model: Game theory is a mathematical model for cooperation or non-cooperation applications. It uses the independent actions of several agents, who may be individuals, multiple agents or any combination of these. It provides a language for decision-making and analyses strategic scenarios. The formal form of a CG can be succinctly represented by a matrix, which shows the agents, the strategies and the payoffs, as shown in Fig. 4a. Each agent chooses either ‘Defection (D)’ or ‘Cooperation (C)’. For example, for two agents, the combination is \(s_1(D, D), s_2(D, C), s_3(C, D)\) and \(s_4(C, C)\). The evolutionary dynamics for cooperation and defection have inverse payoffs, as shown in Fig. 4b, and a screening model is developed by integrating the objective probability, using Bayesian rules [15].

The statistical data for 42 patients with a mean age of 69.4 ± 13.1 years were used to design the screening model. The overall patients enrolled in this study consist of haemodialysis patients (27 males and 15 females). Base on haemodialysis treatment years, patients were divided into three groups: (a) < 1 year with low peripheral vascular disease (PAD) risk; (b) < 10 years with PAD risk; (c) > 10 years with PAD risks. These were selected from the Institutional Review Board (IRB) of Kaohsiung Veterans General Hospital (KVGH), Tainan Branch, under contract number: VGHKS13-CT12-11. Within the 30 data sets that were compiled for the screening model, 12 sets were randomly selected, to validate the proposed screening model. All of the participants had an AVF and consented to undergo follow-up examinations. Equations (7) and (8) are utilised to calculate the FODEs, using the system parameters, \(a = 2\) and \(b = 1\), subject to \(a > 0\) and \(b > 0\) and \(\alpha = 0.9\), which quantify the relationship between the FODEs and the DOS, as shown in Fig. 5. If an AVF stenosis is an irreversible symptom, three risk levels are determined within specific ranges, in terms of

![Figure 4 CG model](image)

\(a\) Normal form of CG
\(b\) Evolutionary dynamics of strategic scenario

![Figure 5 DOS versus FODE](image)
the DOS, where Class III: DOS > 0.5, Class II: 0.3 < DOS < 0.5 and
Class I: DOS < 0.3 [13], as seen in Fig. 5. In terms of the evolution-
dynamics from Risk 1 to Risk 3, evolutions might be a combi-
nation of the decreased probability of the current function (Risk 1
and Risk 2) and the increased probability of dysfunction (Risk
1 → 2 and Risk 2 → 3). Therefore each risk’s payoff can be
expressed as a probability function, as

\[
\begin{align*}
 r_1(\Psi) &= \left\{ \begin{array}{ll}
 0, & 0 \leq \Psi < 0.3549, \\
 \exp \left(-1 \times \frac{(\Psi - 0.3549)^2}{0.1336}\right), & 0.3549 \leq \Psi \leq 3
 \end{array} \right. \\
 r_2(\Psi) &= \exp \left(-1 \times \frac{(\Psi - 1.0000)^2}{0.4195}\right), \quad 0 \leq \Psi \leq 3 \\
 r_3(\Psi) &= \exp \left(-1 \times \frac{(\Psi - 2.5383)^2}{-0.7042}\right), \quad 0 \leq \Psi < 2.5283 \\
 &\quad \quad \quad 1.253830 \leq \Psi \leq 3
\end{align*}
\]

(13)

The three risks can be represented as \(r_1(\Psi) \) for Risk 1, \(r_2(\Psi) \) for Risk 2 and \(r_3(\Psi) \) for Risk 3, in term of the DOS. Their conflicting payoffs are
\(r_1 = (1 - r_1(\Psi)) \), \(r_2 = (1 - r_2(\Psi)) \) and \(r_3 = (1 - r_3(\Psi)) \). The related parameters for this study are shown in Table 1.

If each pair of risks conflict and the three risks are independent, the evolution dynamics of three risks are represented by the fol-
lowing two games:

- **Game I**: Risk 1 (D) and Risk 2 (C) are independent if and only if
 their joint probability is multiplication. The normal form of Game I
 is defined by a matrix

\[
\begin{pmatrix}
 s_1^D (D \cap C) & s_2^D (D \cap C) \\
 s_1^C (D \cap C) & s_2^C (D \cap C)
\end{pmatrix} = \begin{pmatrix}
 r_1 \times r_2 & r_1 \times r_2 \\
 r_1 \times r_2 & r_1 \times r_2
\end{pmatrix}
\]

(14)

where \(D \) and \(C \) are conflicting actions: \(r_1(\Psi) \) and \(r_2(\Psi) \). The payoff, \(s_1^D \), is a relevant combination for Risk 1, which is satisfied by the inequality, \(2s_1^D > (s_1^C + s_1^D) \). The payoff, \(s_1^C \), for Risk 2, is satisfied by the inequality, \(2s_1^C > (s_2^C + s_1^C) \), and the payoff for Risk 1→2 is satisfied by inequalities, \(2s_1^D < (s_1^C + s_1^D) \) and \(2s_1^C < (s_1^C + s_1^D) \).

When payoffs, \(s_1^D = s_1^C \), \(\Psi_1^D \) is the ‘equilibrium point’, as shown in Fig. 6a.

- **Game II**: Risk 2 (D) and Risk 3 (C) are independent. The normal form is given by

\[
\begin{pmatrix}
 s_1^D (D \cap C) & s_2^D (D \cap C) \\
 s_1^C (D \cap C) & s_2^C (D \cap C)
\end{pmatrix} = \begin{pmatrix}
 r_2 \times r_3 & r_2 \times r_3 \\
 r_2 \times r_3 & r_2 \times r_3
\end{pmatrix}
\]

(15)

The payoffs for Risk 1 to Risk 3 are satisfied by the inequalities, as shown in Fig. 6b. When payoffs, \(s_1^D = s_2^D \), \(\Psi_2^D \) is the ‘equilibrium point’.

4. Experimental results: For the bilateral PPG measurement, the
subjects relaxed for 10 min. The room temperature was set at
25 ± 1°C. The bilateral PPG signals were obtained using a data
acquisition controller (MSP430) from the measurement system
and a tablet PC. A computer-assisted system was also designed,
to provide physicians with a tool for signal processing and
stenosis screening. The graphic user interface of the prototype
used LabVIEW graphical programming (National InstrumentsTM
Corporation, Austin, Texas, USA) and Matlab software
(Mathwork, Natick, Massachusetts, USA). Two PPG probes
were placed on the sinister and dexter thumbs and the time-domain
PPG signals are shown in Fig. 7a. Using (7) and (8), the FODEs
between the sinister and dexter thumbs’ PPG signals, \(\Phi_1 \) and \(\Phi_2 \), can be calculated, as shown in Fig. 7b. Therefore the norm of
(\(\Phi_1 \), \(\Phi_2 \)) can also be calculated using (9), for each detection
cycle, as shown in Fig. 7c. Numerical tests and methodological

Table 1 Related parameters for the three risk levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Risk (no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>Risk 1, (r_1) (11)</td>
</tr>
<tr>
<td>mean</td>
<td>0.3549</td>
</tr>
<tr>
<td>standard deviation</td>
<td>+0.1336</td>
</tr>
</tbody>
</table>

Figure 6 Payoff profiles and inference rules

a) Payoff profiles of Game I and inference rules
b) Payoff profiles of Game II and inference rules

For risk screening, the maximum composite operations are
used to generate the possible result, \(S_m^+ \), as

\[
S_m^+ = \max_{0 \leq \Delta \leq \Delta_{\text{max}}} \left[\max (s_1, s_2), \max (s_1^D, s_2^D) \right]
\]

(16)

where \(m = 1, 2 \) and 3, \(m = 1 \) for Risk 1, \(m = 2 \) for Risk 2 and \(m = 3 \)
for Risk 3. The inference mechanism for dysfunction screening in
each game is satisfied by these inequalities, as

- likely: \(s_1 > s_4 \) and \(2s_1 > (s_2+s_3) \);
- average: \(s_1 > s_4 \) or \(s_1 < s_4, 2s_1 < (s_2+s_3) \) and \(2s_4 < (s_2+s_3) \);
- very likely: \(s_1 < s_4 \) and \(2s_4 > (s_2+s_3) \).

Healthcare Technology Letters, 2015, Vol. 2, Iss. 3, pp. 64–69
patients are shown in Table 2, in which the index, $\Psi = 0.6540$, and DOS = 0.3791. The CG-based decision-making models for the two games are constructed as

Step 1: for the given related parameters for the three risk levels, the probabilities, r_1, r_2 and r_5, and the conflicting probabilities, \(r'_1 = (1-r_1), r'_2 = (1-r_2) \) and \(r'_5 = (1-r_5) \) can be calculated using the probability functions.

Step 2: the payoffs for Game I and Game II are calculated using (14) and (15), \((s'_1, z'_1) = (0.0027, 0.5036)\) and \((s''_1, z''_1) = (0.5060, 0.0003)\).

Step 3: The maximum payoff is determined using (16): \(\max(s'_1, z'_1) = 0.5036\) and \(\max(\Phi'_2, V_p') = 0.5060\), with the constraint conditions: \(2s'_1 = 1.0072 > (s'_1 + s'_2) = 0.4935\) and \(2s''_1 = 1.0121 > (s''_1 + s''_2) = 0.4935\).

Step 4: the possible result, $S'_2 = \max(0.5036, 0.5060) = 0.5060$. The inference profiles are shown in Fig. 6.

The proposed CG-based screening model verifies the ‘Class II’ level. Satisfying the specific inequalities, the trend shows that the probabilities, s'_1 and s''_1, increase and become ‘very likely’ for level ‘Risk 2’, as shown in Fig. 6. In addition, this case study is a patient with AVF-mediated stenosis and PAD risk, the peripheral resistance will be increased or the peripheral will be vascular occlusive, hence bilateral PPG signals becoming asynchronous at the sinister and dexter thumbs, as shown in Fig. 7a. Changes in the AMPs of PPG signals and prolonged transit time delay indicate the vascular access stenosis severity. Therefore the norm of FODEs will increase, as shown in Fig. 7c.

4.2. Methodological comparisons: Acoustic measurement, a commercial Doppler flow-meter with 7.5 MHz frequency can be used on vessels with a diameter of 5 to 12 mm. Therefore, velocity flows, peak-systolic velocity (PSV), peak-diastolic velocity (PDV) and heart rate can be monitored. In this study, Doppler flowmeter was used to obtain the PSV and the PDV at the near venous anastomosis site (V site). Then resistive (Res) pressure, in resistance and the change in index is calculated, as shown in Table 2. This reflects vascular resistance and the change in flow volume due to a change in pressure, in in vivo studies. The PDV causes a decrease in V_{mv} hence the value of the Res index exceeds 0.65 [16]. The normal range for an ordinary vessel is 0.50–0.65. Higher values indicate cardiovascular disease or vascular stenosis. However, the measurement sites (inflow site/outflow site), quantification errors

Table 2 Numerical tests of six patients with ESRD

<table>
<thead>
<tr>
<th>No.</th>
<th>D, cm</th>
<th>d, cm</th>
<th>DOS</th>
<th>V_p, m/sec</th>
<th>V_{mv}, m/sec</th>
<th>Resistive (Res)</th>
<th>hsCRP, mg/L</th>
<th>Ψ</th>
<th>CG decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Game I(s'_1, z'_1)</td>
</tr>
<tr>
<td>1</td>
<td>0.768</td>
<td>0.236</td>
<td>0.9055</td>
<td>0.372</td>
<td>0.048</td>
<td>0.8709</td>
<td>9.104</td>
<td>2.7705</td>
<td>(0.0000, 0.0000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S_1 = 0.8968$, Risk 3</td>
</tr>
<tr>
<td>2</td>
<td>0.883</td>
<td>0.444</td>
<td>0.7471</td>
<td>0.660</td>
<td>0.072</td>
<td>0.8909</td>
<td>1.682</td>
<td>2.3775</td>
<td>(0.0000, 0.0000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S_1 = 0.9492$, Risk 3</td>
</tr>
<tr>
<td>3</td>
<td>1.280</td>
<td>0.94</td>
<td>0.4607</td>
<td>1.220</td>
<td>0.140</td>
<td>0.8852</td>
<td>9.909</td>
<td>1.1400</td>
<td>(0.0000, 0.8946)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S_2 = 0.8946$, Risk 2</td>
</tr>
<tr>
<td>4</td>
<td>1.080</td>
<td>0.851</td>
<td>0.3791</td>
<td>0.853</td>
<td>0.300</td>
<td>0.6480</td>
<td>1.005</td>
<td>0.6540</td>
<td>(0.0027, 0.5036)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S_3 = 0.5060$, Risk 2</td>
</tr>
<tr>
<td>5</td>
<td>0.961</td>
<td>0.812</td>
<td>0.2860</td>
<td>0.985</td>
<td>0.240</td>
<td>0.7563</td>
<td>0.830</td>
<td>0.5120</td>
<td>(0.1705, 0.1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S_4 = 0.2583$, Risk 1→2</td>
</tr>
<tr>
<td>6</td>
<td>1.710</td>
<td>1.450</td>
<td>0.2809</td>
<td>1.200</td>
<td>0.504</td>
<td>0.5800</td>
<td>6.182</td>
<td>0.5115</td>
<td>(0.1721, 0.1979)</td>
</tr>
</tbody>
</table>

Note: $\text{Res} = (V_p - V_{mv})V_p$, where V_p is the PSV and V_{mv} is the PDV, according to the acoustic Doppler measurement
Doppler ultrasound [17] can overcome the drawbacks for vascular access stenosis evaluation in routine examinations. Its device is not suitable for early detection or homecare applications by the patients themselves.

In clinical examinations, high sensitivity C-reactive protein (hsCRP) values between 0.00 and 6.00 mg/l are also used to evaluate the risk of cardiovascular diseases, atherosclerosis, endothelial dysfunction and Type 2 diabetes. The specific degrees: <1 mg/l for low risk, 1–3 mg/l for average risk, 3–6 mg/l for high risk, are defined by the American Heart Association [18]. In this study, serum hsCRP was measured using the Unicel® DxC 600, synchron clinical system (Beck-Man Coulter, Inc., USA). For patients with AVF stenosis and diabetes mellitus, the linear regression can be used to quantify the relationship between the FODEs, Ψ and the hsCRP, as hsCRP = 1.8595 × Ψ – 0.3739 (R² = 0.5080). However, this value is easily affected if a patient has myocardial infarction, infection (pneumonia or osteitis) and after percutaneous transluminal angioplasty/surgery intervention. Therefore infection and infarction factors (hsCRP > 6 mg/l) must be excluded. Table 2 shows that the FODEs are strongly associated with the degree of AVF stenosis. The differences in RT and AMPs for both sides are quantified using the FODE, Ψ and are positively correlated with the DOS. The specific ranges between 0 and 3 are divided into three risk levels for AVF dysfunction screening.

5. Conclusion: To verify the proposed method, patients with ESRD are tested, using physiological measurement. 32 sets of measurement data are used to design the proposed screening model. For six randomly selected patients, the test results show that the proposed model is highly accurate. Comparisons of the proposed method with decisions by physicians, ultrasound imaging, Doppler flowmeter and hsCRP show that the proposed method is more efficient in clinical applications. The proposed detector is used for screening and decision-making rules are represented using CG models. The degree is divided into three risk categories, which determine the level of stenosis. An embedded system can be used to perform specific functions, including control, signal processing and screening applications. A portable detector for AVF dysfunction screening during haemodialysis treatment is now possible. This proposed tool might also be integrated into an existing medical device to screen the risk level.

6. Funding and declaration of interests: This work was supported in part by the Ministry of Science and Technology, Taiwan, under contract number: MOST 103-2221-E-244-001, duration: 1 August 2014 – 31 July 2015. Research involving human participants and the Institutional Review Board (IRB) of the Kaohsiung Veterans General Hospital, Tainan branch, was approved under contract number: VGHKS13-CT12-11. Conflict of interest: none declared.

7. References