Radiation effects (semiconductor technology)
More general concepts than this:
- Sort by:
- Newest first
- Titles A to Z
Filter by subject:
- Electrical and electronic engineering [3]
- Circuit theory and circuits [3]
- Electronic circuits [3]
- Digital electronics [3]
- Components, electron devices and materials [3]
- Semiconductor materials and technology [3]
- Semiconductor technology [3]
- Radiation effects (semiconductor technology) [3]
- Computer and control engineering [3]
- Computer hardware [3]
- [2]
- http://iet.metastore.ingenta.com/content/subject/c5100,http://iet.metastore.ingenta.com/content/subject/a,http://iet.metastore.ingenta.com/content/subject/a8000,http://iet.metastore.ingenta.com/content/subject/a8600,http://iet.metastore.ingenta.com/content/subject/a8620,http://iet.metastore.ingenta.com/content/subject/a8620w,http://iet.metastore.ingenta.com/content/subject/b1265b,http://iet.metastore.ingenta.com/content/subject/b1265d,http://iet.metastore.ingenta.com/content/subject/b1265h,http://iet.metastore.ingenta.com/content/subject/b2200,http://iet.metastore.ingenta.com/content/subject/b2230,http://iet.metastore.ingenta.com/content/subject/b2230f,http://iet.metastore.ingenta.com/content/subject/b2560,http://iet.metastore.ingenta.com/content/subject/b2560s,http://iet.metastore.ingenta.com/content/subject/b2570,http://iet.metastore.ingenta.com/content/subject/b2570d,http://iet.metastore.ingenta.com/content/subject/c5120,http://iet.metastore.ingenta.com/content/subject/c5180,http://iet.metastore.ingenta.com/content/subject/c5300,http://iet.metastore.ingenta.com/content/subject/c5320,http://iet.metastore.ingenta.com/content/subject/c5320g
- c5100,a,a8000,a8600,a8620,a8620w,b1265b,b1265d,b1265h,b2200,b2230,b2230f,b2560,b2560s,b2570,b2570d,c5120,c5180,c5300,c5320,c5320g
- [2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]
- /search/morefacet;jsessionid=2kjrkcb0w9a24.x-iet-live-01
- /content/searchconcept;jsessionid=2kjrkcb0w9a24.x-iet-live-01?pageSize=50&sortDescending=true&facetNames=pub_concept_facet+pub_year_facet+pub_concept_facet&value3=2017&value1=b2550r&value2=b1265&facetOptions=2+3+4&option1=pub_concept&option2=pub_concept_facet&option3=pub_year_facet&sortField=prism_publicationDate&operator3=AND&operator2=AND&operator4=AND&option4=pub_concept_facet&value4=
- See more See less
Filter by content type:
Filter by publication date:
- 2017 [3]
Filter by author:
Single-event transients (SETs) due to heavy-ion (HI) strikes adversely affect the electronic circuits in sub-100 nm regime in radiation environment. Time-to-digital converter (TDC) is an important electronic component in many fields such as space applications and is used for measuring time precisely as a digital value. In this study, the effect of SET due to radiation strike on 45 nm vernier-type TDC with a resolution of 7 ps is analysed using cadence spectre circuit simulator. When HI strikes the delay line of TDC close to the START/STOP pulse transition, it either widens or narrows the time interval to be measured, depending on whether it strikes the top/bottom voltage-controlled delay line (VCDL). Results show that the TDC is sensitive if the SET occurs during the transition of START/STOP pulse. Moreover, the change in the time interval occurs in a regular staircase pattern, if the VCDL is struck at all instants near the pulse transition. These errors lead to erroneous digital output and cause abrupt deviations in the staircase transfer characteristics of TDC. SETs in other constituent components of TDC such as D-flip-flop and priority encoder produces glitches which can be mitigated using existing guard gate technique.
Field programmable gate array (FPGA) attributes of logic configurability, bitstream storage, and dynamic signal routing can be realised by leveraging the complementary benefits of emerging devices with complementary metal oxide semiconductor (CMOS)-based devices. A novel carbon/magnet lookup table (CM-LUT) is developed and evaluated by trading off a range of mixed heterogeneous technologies to balance energy, delay, and reliability attributes. Herein, magnetic spintronic devices are employed in the configuration memory to contribute non-volatility and high scalability. Meanwhile, carbon nanotube field-effect transistors (CNFETs) provide desirable conductivity, low delay, and low power consumption. The proposed CM-LUT offers ultra-low power and high-speed operation while maintaining high endurance re-programmability with increased radiation-induced soft-error immunity. The proposed four-input one-output CM-LUT utilises 41 CNFETs and 20 magnetic tunnel junctions for read operations and 35 CNFET to perform write operations. Results indicate that CM-LUT achieves an average four-fold energy reduction, eight-fold faster circuit operation and 9.3% reconfiguration power delay product improvement in comparison with spin-based look-up tables. Finally, additional hybrid technology designs are considered to balance performance with the demands of energy consumption for near-threshold operation.
Soft errors in semiconductor memories occur due to charged particle strikes on sensitive nodes. Technology and voltage scaling increased dramatically the susceptibility of static random access memories (SRAMs) to soft errors. In this study, the authors present AS8-SRAM, a new asymmetric memory cell that enhances the soft error resilience of SRAMs by increasing the cells critical charge. They run Simulation Program with Integrated Circuit Emphasissimulations and system level experiments to validate the AS8-SRAM cell characteristics at circuit level and evaluate the energy and reliability effectiveness of an AS8-SRAM-based cache memory. The authors’ results show that AS8-SRAM presents up to 58 times less failures in time compared to six-transistor SRAM. Moreover, based on embedded benchmarks experimentations, AS8-SRAM achieves up to 22% reduction in energy-delay product without any considerable loss in performance.