Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Production Methods of Stacks and Hydrogen with Associated Costs

Production Methods of Stacks and Hydrogen with Associated Costs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

There are currently approximately 50 million tonnes of hydrogen produced annually. This figure is expected to rise over the coming decades with the growth of a hydrogen economy. Hydrogen is currently and predominately used in industry to produce ammonia, hydrogenation of fats and pharmaceutical manufacture. All of these industries will continue to use hydrogen gas, so there will be an increased demand on the volume of hydrogen produced each year if the hydrogen economy is to succeed as an alternative form of energy. Consequently, hydrogen would need to be sourced from more than a single production pathway, and yet be sustainable. Each production pathway has unique benefits and disadvantages, such as cost of production and the purity of hydrogen produced. As a result, new sustainable methods of producing hydrogen are being researched for optimisation and commercialisation. In this article, the authors examine traditional and new routes to production techniques and costs that are associated with them.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • [48]. Millet, P., Mbemba, N., Grigoriev, S.G., Fateev, Y.N., Aukauloo, A., Etiévait, C.: ‘Electrochemical performances of PEM water electrolysis cells and perspectives’, Int. J. Hydrog. Energy, 2010.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • [59]. Su, H., et al: ‘Performance investigation of membrane electrode assemblies for hydrogen production by solid polymer electrolyte water electrolysis’, Int. J. Electrochem. Sci., 2012, 7, (5).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • [45]. Grigoriev, S.A., Mamat, M.S., Dzhus, K.A., Walker, G.S., Millet, P.: ‘Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis’, Int. J. Hydrog. Energy.In Press, Corrected Proof.
    21. 21)
    22. 22)
    23. 23)
      • [56]. Gurrik, S.: ‘Performance of supported catalysts for water electrolysis’ (in Norwegian University of Science and Technology, 2012).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • [1]. Rand, D.A.J., Dell, R.M.: ‘Hydrogen energy – challenges and prospects’ (The Royal Society of Chemistry, 2008).
    34. 34)
      • [10]. Millet, P., Ngameni, R., Grigoriev, S.A., Fateev, V.N.: ‘Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems’, Int. J. Hydrog. Energy, 2010.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • [53]. Buckley, D.N., Burke, L.D.: ‘The oxygen electrode. Part 6 – Oxygen evolution and corrosion at iridium anodes’, J. Chem. Soc. Faraday Trans. 1, Phys. Chem. Condensed Phases, 1976, 72, (0), pp. 24312440.
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • [12]. Harrison, K., Levene, J.I.: ‘Electrolysis of waterSolor Hydrogen Generation (Springer, New York, USA), 2008, pp. 4163.
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
      • [17]. Gandía, L.M., Arzamendi, G., Diéguez, P.M.: ‘Chapter 1 – renewable hydrogen energy: an overview’, in Gandía, L.M., Arzamendi, G., Diéguez, P.M. (Eds.): ‘Renewable hydrogen technologies’ (Elsevier, Amsterdam, 2013), pp. 117.
    68. 68)
    69. 69)
    70. 70)
      • [13]. Zoulias, E., Varkaraki, E., Lymberopoulos, N., Christodoulou, C.N., Karagioris, G.N.: ‘A review of water electrolysis’, TCJST, 2004, 4, (2), pp. 4171.
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
http://iet.metastore.ingenta.com/content/reference/10.1049/etr.2015.0007
Loading

Related content

content/reference/10.1049/etr.2015.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address