Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Rough set-based rule generation and Apriori-based rule generation from table data sets: a survey and a combination

The authors have been coping with new computational methodologies such as rough sets, information incompleteness, data mining, granular computing, etc., and developed some software tools on association rules as well as new mathematical frameworks. They simply term this research Rough sets Non-deterministic Information Analysis (RNIA). They followed several novel types of research, especially Pawlak's rough sets, Lipski's incomplete information databases, Orłowska's non-deterministic information systems, Agrawal's Apriori algorithm. These are outstanding researches related to information incompleteness, data mining, and rule generation. They have been trying to combine such novel researches, and they have been trying to realise more intelligent rule generator handling data sets with information incompleteness. This study surveys the authors’ research highlights on rule generators, and considers a combination of them.

References

    1. 1)
      • [25]. Sakai, H.: ‘Execution logs by RNIA software tools’. Available at http://www.mns.kyutech.ac.jp/sakai/RNIA, accessed January 2016.
    2. 2)
    3. 3)
    4. 4)
      • [14]. Sakai, H., Wu, M., Nakata, M.: ‘Apriori-based rule generation in incomplete information databases and non-deterministic information systems’, Fundam. Inf., 2014, 130, (3), pp. 343376.
    5. 5)
      • [15]. Sakai, H., Nakata, M., Watada, J.: ‘NIS-Apriori-based rule generation with three-way decisions and its application system in SQL’, Inf. Sci., 2018(in Press).
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • [2]. Pawlak, Z.: ‘Systemy informacyjne: podstawy teoretyczne’ (WNT Press, Poland, 1983), p. 186(in Polish).
    12. 12)
    13. 13)
      • [39]. Ślęzak, D., Sakai, H.: ‘Automatic extraction of decision rules from non-deterministic data systems: theoretical foundations and SQL-based implementation’. Proc. DTA 2009, 2009, vol. 64, pp. 151162.
    14. 14)
      • [41]. Kowalski, M., Stawicki, S.: ‘SQL-based heuristics for selected KDD tasks over large data sets’. Proc. FedCSIS 2012, 2012, pp. 303310.
    15. 15)
      • [42]. Swieboda, W., Nguyen, S.: ‘Rough set methods for large and spare data in EAV format’. Proc. IEEE RIVF, 2012, pp. 16.
    16. 16)
    17. 17)
      • [10]. Komorowski, J., Pawlak, Z., Polkowski, L., et al: ‘Rough sets: a tutorial’, in Pal, S.K., Skowron, A. (Eds.): ‘Rough fuzzy hybridization: a new method for decision making’ (Springer, German, 1999), pp. 398.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • [3]. Pawlak, Z.: ‘Rough sets’ (Kluwer Academic Publisher, Kluwer, Netherlands, 1991).
    22. 22)
      • [19]. Greco, S., Matarazzo, B., Słowiński, R.: ‘Granular computing and data mining for ordered data: the dominance-based rough set approach’, in Meyers, R.A. (Ed.): ‘Encyclopedia of complexity and systems science’ (Springer, USA, 2009), pp. 42834305.
    23. 23)
    24. 24)
      • [35]. Sakai, H., Okuma, H., Wu, M., et al: ‘Rough non-deterministic information analysis for uncertain information’, in Nakamatsu, K., Jain, L.C. (Eds.): ‘The handbook on reasoning-based intelligent systems’ (World Scientific, Singapore, 2013), pp. 81118.
    25. 25)
    26. 26)
      • [40]. Ślęzak, D., Eastwood, V.: ‘Data warehouse technology by infobright’. Proc. ACM SIGMOD, 2009, pp. 841846.
    27. 27)
    28. 28)
      • [12]. Kripke, S.A.: ‘Semantical considerations on modal logic’, Acta Philos. Fenn., 1963, 16, pp. 8394.
    29. 29)
      • [11]. Skowron, A., Rauszer, C.: ‘The discernibility matrices and functions in information systems’, in Słowiński, R. (Ed.): ‘Intelligent decision support – handbook of advances and applications of the rough set theory’ (Kluwer Academic Publishers, Netherlands, 1992), pp. 331362.
    30. 30)
    31. 31)
    32. 32)
      • [33]. Sakai, H.: ‘Effective procedures for handling possible equivalence relations in non-deterministic information systems’, Fundam. Inf., 2001, 48, (4), pp. 343362.
    33. 33)
      • [13]. ‘UCI machine learning repository’. Available at http://mlearn.ics.uci.edu/MLRepository.html, accessed April 2010.
    34. 34)
    35. 35)
    36. 36)
      • [38]. Sakai, H., Liu, C., Zhu, M., et al: ‘On NIS-Apriori based data mining in SQL’. Proc. Int. Conf. Rough Sets, 2016 (LNCS, 9920), pp. 514524.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • [7]. Agrawal, R., Srikant, R.: ‘Fast algorithms for mining association rules in large databases’. Proc. VLDB'94, Morgan Kaufmann, 1994, pp. 487499.
    41. 41)
    42. 42)
      • [37]. Sakai, H., Ishibashi, R., Koba, K., et al: ‘Rules and apriori algorithm in non-deterministic information systems’, Trans. Rough Sets, 2008, 9, pp. 328350.
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2019.0001
Loading

Related content

content/journals/10.1049/trit.2019.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address