http://iet.metastore.ingenta.com
1887

access icon openaccess Enhanced CNN for image denoising

Loading full text...

Full text loading...

/deliver/fulltext/trit/4/1/TRIT.2018.1054.html;jsessionid=235j1u57hql44.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2ftrit.2018.1054&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • [5]. Mairal, J., Bach, F., Ponce, J., et al: ‘Non-local sparse models for image restoration’. Proc. IEEE Int. Conf. Computer Vision, September/October 2009, pp. 22722279.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • [10]. Zhu, M., Chan, T.: ‘An efficient primal-dual hybrid gradient algorithm for total variation image restoration’, UCLA CAM Report, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.898&rep=rep1&type=pdf, 2008.
    11. 11)
    12. 12)
    13. 13)
      • [13]. Gu, S., Zhang, L., Zuo, W., et al: ‘Weighted nuclear norm minimization with application to image denoising’. Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2014, pp. 28622869.
    14. 14)
      • [14]. Lefkimmiatis, S.: ‘Universal denoising networks: a novel CNN architecture for image denoising’. Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2018, pp. 32043213.
    15. 15)
    16. 16)
      • [16]. Lefkimmiatis, S.: ‘Non-local color image denoising with convolutional neural networks’. Proc. IEEE Conf. Computer Vision Pattern Recognition, July 2017, pp. 35873596.
    17. 17)
      • [17]. Zhang, K., Zuo, W., Gu, S., et al: ‘Learning deep CNN denoiser prior for image restoration’. Proc. IEEE Conf. Computer Vision Pattern Recognition, July 2017, pp. 35873596.
    18. 18)
    19. 19)
      • [19]. Wu, D., Kim, K., Fakhri, G.E., et al: ‘A cascaded convolutional neural network for X-ray low-dose CT image denoising’, arXiv preprint arXiv:1705.04267, 2017.
    20. 20)
    21. 21)
      • [21]. Ahn, B., Cho, N.I.: ‘Block-matching convolutional neural network for image denoising’, arXiv preprint arXiv:1704.00524, 2017.
    22. 22)
      • [22]. Liu, P., Zhang, H., Zhang, K., et al: ‘Multi-level wavelet-CNN for image restoration’, arXiv preprint arXiv:1805.07071, 2018.
    23. 23)
      • [23]. Tian, C., Xu, Y., Fei, L., et al: ‘Deep learning for image denoising: a survey’, arXiv preprint arXiv:1810.05052, 2018.
    24. 24)
    25. 25)
      • [25]. Gondara, L.: ‘Medical image denoising using convolutional denoising auto encoders’. Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), 2016, pp. 241246.
    26. 26)
      • [26]. Kokkinos, F., Lefkimmiatis, S.: ‘Deep image demosaicking using a cascade of convolutional residual denoising networks’, arXiv preprint arXiv:1803.05215, 2018.
    27. 27)
      • [27]. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. IEEE Int. Conf. Computer Vision, June 2016, pp. 770778.
    28. 28)
      • [28]. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’, arXiv preprint arXiv:1502.03167, 2015.
    29. 29)
      • [29]. Yu, F., Koltun, V.: ‘Multi-scale context aggregation by dilated convolutions’, arXiv preprint arXiv:1511.07122, 2015.
    30. 30)
      • [30]. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers:surpassing human-level performance on imagenet classification’. IEEE Int. Conf. Computer Vision, June 2015, pp. 10261034.
    31. 31)
      • [31]. Duchi, J., Hazan, E., Singer, Y.: ‘Adaptive subgradient methods for online learning and stochastic optimization’, J. Mach. Learn. Res., 2011, 12, pp. 21212159.
    32. 32)
      • [32]. Kingma, D., Ba, J.: ‘Adam: a method for stochastic optimization’. Int. Conf. for Learning Representations, 2015.
    33. 33)
      • [33]. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’, Adv. Neural Inf. Process. Syst., 2012, pp. 10971105.
    34. 34)
    35. 35)
      • [35]. Fei, L., Lu, G., Jia, W., et al: ‘Feature extraction methods for palmprint recognition: a survey and evaluation’, IEEE Trans. Syst., Man, Cybern. Syst., 2018.
    36. 36)
    37. 37)
      • [37]. Wang, T., Sun, M., Hu, K.: ‘Dilated residual network for image denoising’, arXiv preprint arXiv:1708.05473, 2017.
    38. 38)
      • [38]. Zoran, D., Weiss, Y.: ‘From learning models of natural image patches to whole image restoration’. IEEE Conf. Computer Vision, June 2011, pp. 479486.
    39. 39)
      • [39]. Kinga, D., Adam, J.B.: ‘A method for stochastic optimization’, Int. Conf. Learn. Representations (ICLR), 2015, 5.
    40. 40)
      • [40]. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on imagenet classification’. IEEE Conf. Computer Vision, June 2015, pp. 10261034.
    41. 41)
      • [41]. Paszke, A., Gross, S., Chintala, S.: ‘Pytorch’, 2017.
    42. 42)
      • [42]. Chen, Y., Pock, T.: ‘Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, PP, (99), pp. 11.
    43. 43)
    44. 44)
      • [44]. Schmidt, U., Roth, S.: ‘Shrinkage fields for effective image restoration’. Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2014, pp. 27742781.
    45. 45)
      • [45]. Burger, H.C., Schuler, C.J., Harmeling, S.: ‘Image denoising: Can plain neural networks compete with BM3D?’. Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2012, pp. 23922399.
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.1054
Loading

Related content

content/journals/10.1049/trit.2018.1054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address