Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Influence of image classification accuracy on saliency map estimation

Loading full text...

Full text loading...

/deliver/fulltext/trit/3/3/TRIT.2018.1012.html;jsessionid=spg92e44eecl.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2ftrit.2018.1012&mimeType=html&fmt=ahah

References

    1. 1)
      • [20]. Chen, L. C., Papandreou, G., Kokkinos, I., et al: ‘Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution’, arXiv preprint arXiv: 1606.00915, 2016.
    2. 2)
    3. 3)
    4. 4)
      • [25]. Kümmerer, M., Wallis, T. S., Bethge, M.: ‘Deepgaze II: reading fixations from deep features trained on object recognition’, arXiv preprint arXiv: 1610.01563, 2016.
    5. 5)
    6. 6)
    7. 7)
      • [9]. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
    8. 8)
    9. 9)
      • [49]. Judd, T., Ehinger, K., Durand, F., et al: ‘Learning to predict where humans look’. Int. Conf. on Computer Vision, Kyoto, Japan, 2009.
    10. 10)
      • [23]. Huang, X., Shen, C., Boix, X., et al: ‘Salicon: reducing the semantic gap in saliency prediction by adapting deep neural networks’. Int. Conf. on Computer Vision, Santiago, Chile, 2015.
    11. 11)
      • [50]. Bylinskii, Z., Judd, T., Oliva, A., et al: ‘What do different evaluation metrics tell us about saliency models?’, arXiv preprint arXiv:1604.03605, 2016.
    12. 12)
      • [19]. Yu, F., Koltun, V.: ‘Multi-scale context aggregation by dilated convolutions’. Int. Conf. on Learning Representation, San Juan, Puerto Rico, 2016.
    13. 13)
      • [8]. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Int. Conf. on Learning Representations, San Diego, USA, 2015.
    14. 14)
    15. 15)
      • [55]. Torchvision’. Available at https://github.com/pytorch/vision.
    16. 16)
      • [43]. Maas, A. L., Hannun, A. Y., Ng, A. Y.: ‘Rectifier nonlinearities improve neural network acoustic models’. Int. Conf. on Machine Learning, Atlanta, USA, 2013.
    17. 17)
    18. 18)
      • [31]. Harel, J., Koch, C., Perona, P.: ‘Graph-based visual saliency’, Adv. Neural. Inf. Process. Syst., 2007, 19, pp. 545552.
    19. 19)
    20. 20)
      • [47]. Li, Y., Hou, X., Koch, C., et al: ‘The secrets of salient object segmentation’. Conf. on Computer Vision and Pattern Recognition, Columbus, USA, 2014.
    21. 21)
      • [14]. Chen, Y., Li, J., Xiao, H., et al: ‘Dual path networks’, Adv. Neural. Inf. Process. Syst., 2017, 30, pp. 44674475.
    22. 22)
      • [24]. Kruthiventi, S. S. S., Ayush, K., Babu, R. V.: ‘Deepfix: a fully convolutional neural network for predicting human eye fixations’, arXiv preprint arXiv: 1510.02927, 2015.
    23. 23)
      • [56]. Tieleman, T., Hinton, G.: ‘Torchvision’, COURSERA: Neural Networks for Machine Learning, 2012.
    24. 24)
      • [15]. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. Conf. on Computer Vision and Pattern Recognition, Columbus, USA, 2014.
    25. 25)
      • [17]. Redmon, J., Divvala, S., Girshick, R., et al: ‘You only look once: unified, real-time object detection’. Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
    26. 26)
    27. 27)
      • [13]. Pleiss, G., Chen, D., Huang, G., et al: ‘Memory-efficient implementation of densenets’, arXiv preprint arXiv:1707.06990, 2017.
    28. 28)
    29. 29)
      • [26]. Liu, N., Han, J.: ‘A deep spatial contextual long-term recurrent convolutional network for saliency detection’, arXiv preprint arXiv: 1610.01708, 2016.
    30. 30)
      • [10]. Iandola, F. N., Han, S., Moskewicz, M. W., et al: ‘SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size’, arXiv preprint arXiv:1602.07360, 2016.
    31. 31)
      • [16]. Ren, S., He, K., Girshick, R., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’, Adv. Neural. Inf. Process. Syst., 2015, 28, pp. 9199.
    32. 32)
      • [39]. Bylinskii, Z., Judd, T., Borji, A., et al: ‘MIT saliency benchmark’. Available at http://saliency.mit.edu.
    33. 33)
      • [21]. Vig, E., Dorr, M., Cox, D.: ‘Large-scale optimization of hierarchical features for saliency prediction in natural images’. Conf. on Computer Vision and Pattern Recognition, Columbus, USA, 2014.
    34. 34)
      • [54]. Judd, T., Durand, F., Torralba, A.: ‘A benchmark of computational models of saliency to predict human fixations’. MIT Technical Report, 2012.
    35. 35)
      • [33]. Hou, X., Zhang, L.: ‘Dynamic visual attention: searching for coding length increments’, Adv. Neural. Inf. Process. Syst., 2009, 21, pp. 681688.
    36. 36)
      • [4]. Ardizzone, E., Bruno, A., Mazzola, G.: ‘Saliency based image cropping’. Int. Conf. on Image Analysis and Processing, Naples, Italy, 2013, pp. 773782.
    37. 37)
      • [12]. Xie, S., Girshick, R., Dollár, P., et al: ‘Aggregated residual transformations for deep neural networks’. Conf. on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 59875995.
    38. 38)
      • [44]. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’. Int. Conf. on Machine Learning, Lille, France, 2015.
    39. 39)
      • [2]. Feng, Y., Cheung, G., Tan, W. T., et al: ‘Gaze-driven video streaming with saliency-based dual-stream switching’, Vis. Commun. Image Process., San Diego, USA, 2012, pp. 16.
    40. 40)
      • [28]. Taiki, O., Takao, Y.: ‘Fully convolutional DenseNet for saliency-map prediction’. Asian Conf. on Pattern Recognition, Nanjing, China, 2017.
    41. 41)
      • [7]. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ‘ImageNet classification with deep convolutional neural networks’, Adv. Neural. Inf. Process. Syst., 2012, 25, pp. 10971105.
    42. 42)
      • [57]. Pytorch’. Available at https://github.com/pytorch/pytorch.
    43. 43)
      • [1]. Zünd, F., Pritch, Y., Sorkine-Hornung, A., et al: ‘Content-aware compression using saliency-driven image retargeting’, IEEE Int. Conf. Image Process., Melbourne, Australia, 2013, pp. 18451849.
    44. 44)
    45. 45)
      • [18]. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Conf. on Computer Vision and Pattern Recognition, Boston, USA, 2015.
    46. 46)
      • [30]. Bruce, N., Tsotsos, J.: ‘Saliency based on information maximization’, Adv. Neural. Inf. Process. Syst., 2005, 18, pp. 155162.
    47. 47)
      • [27]. Cornia, M., Baraldi, L., Serra, G., et al: ‘Predicting human eye fixations via an LSTM-based saliency attentive model’, arXiv preprint arXiv: 1611.09571, 2016.
    48. 48)
      • [48]. Everingham, M., Winn, J.: ‘The PASCAL visual object classes challenge 2010 (VOC2010) development kit’, 2010.
    49. 49)
      • [11]. Huang, G., Liu, Z., Weinberger, K. Q.: ‘Densely connected convolutional networks’. Conf. on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, vol. 1, p. 3.
    50. 50)
      • [45]. Jiang, M., Huang, S., Duan, J., et al: ‘Salicon: saliency in context’. Conf. on Computer Vision and Pattern Recognition, Boston, USA, 2015.
    51. 51)
      • [42]. Shi, W., Caballero, J., Huszar, F., et al: ‘Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network’. Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
    52. 52)
      • [41]. Zeiler, M. D., Taylor, G. W., Fergus, R.: ‘Adaptive deconvolutional networks for mid and high level feature learning’. Int. Conf. on Computer Vision, Barcelona, Spain, 2011, pp. 17351780.
    53. 53)
    54. 54)
    55. 55)
      • [38]. Deng, J., Dong, W., Socher, R., et al: ‘ImageNet: a large-scale hierarchical image database’. Conf. on Computer Vision and Pattern Recognition, Miami, USA, 2009.
    56. 56)
      • [58]. Bylinskii, Z., Recasens, A., Borji, A., et al: ‘Where should saliency models look next?’. European Conf. on Computer Vision, 2016.
    57. 57)
      • [22]. Kümmerer, M., Theis, L., Bethge, M.: ‘Deep gaze I: boosting saliency prediction with feature maps trained on ImageNet’. Int. Conf. on Learning Representation, San Diego, USA, 2015.
    58. 58)
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.1012
Loading

Related content

content/journals/10.1049/trit.2018.1012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address