Home
>
Journals & magazines
>
CAAI Transactions on Intelligence Technology
>
Volume 3,
Issue 4
> Article
Artificial intelligence in Internet of things
- Author(s): Ashish Ghosh 1 ; Debasrita Chakraborty 1 ; Anwesha Law 1
-
-
View affiliations
-
Affiliations:
1:
Machine Intelligence Unit , Indian Statistical Institute , 203 B.T. Road, Kolkata 700108, West Bengal , India
-
Affiliations:
1:
Machine Intelligence Unit , Indian Statistical Institute , 203 B.T. Road, Kolkata 700108, West Bengal , India
- Source:
Volume 3, Issue 4,
December
2018,
p.
208 – 218
DOI: 10.1049/trit.2018.1008 , Online ISSN 2468-2322
This is an open access article published by the IET, Chinese Association for Artificial Intelligence and Chongqing University of Technology under the Creative Commons Attribution-NoDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)
Received
06/07/2018,
Accepted
08/10/2018,
Revised
27/09/2018,
Published
10/10/2018

Full text loading...
/deliver/fulltext/trit/3/4/TRIT.2018.1008.html;jsessionid=21eb5erxu9vmb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2ftrit.2018.1008&mimeType=html&fmt=ahah
Inspec keywords: Internet of Things; artificial intelligence; cyber-physical systems; security of data
Other keywords: IoT; massively interconnected systems; smart revolution; embedded devices; cyber-physical systems; physical environments; smart objects; data science; AI; Smart Cyber Physical Earth; Internet of Things; artificial intelligence
Subjects: Expert systems and other AI software and techniques; Data security; Ubiquitous and pervasive computing
References
-
-
1)
-
[20]. Ghosh, A., Jain, L.C.: ‘Evolutionary computation in data mining’, in Ghosh, A., Jain, L.C. (Eds.): ‘Studies in fuzziness and soft computing’ (Springer, Berlin, Heidelberg, 2006).
-
-
2)
-
[14]. Zikopoulos, P., Eaton, C.: ‘Understanding big data: analytics for enterprise class hadoop and streaming data’ (McGraw-Hill Osborne Media, New York, USA, 2011).
-
-
3)
-
[15]. Ghosh, A., Mishra, N.S., Ghosh, S.: ‘Fuzzy clustering algorithms for unsupervised change detection in remote sensing images’, Inf. Sci., 2011, 181, (4), pp. 699–715 (doi: 10.1016/j.ins.2010.10.016).
-
-
4)
-
[11]. Marz, N., Warren, J.: ‘Big data: principles and best practices of scalable real-time data systems’ (Manning, New York, USA, 2015).
-
-
5)
-
[31]. Jeong, S.: ‘The internet of garbage’ (Forbes Media, New York, USA, 2015).
-
-
6)
-
[26]. Gomez, C., Paradells, J.: ‘Wireless home automation networks: a survey of architectures and technologies’, IEEE Commun. Mag., 2010, 48, (6), pp. 92–101 (doi: 10.1109/MCOM.2010.5473869).
-
-
7)
-
[2]. Witten, I.H., Frank, E.: ‘Data mining: practical machine learning tools and techniques’ (Morgan Kaufmann, Burlington, Massachusetts, 2016).
-
-
8)
-
[33]. Yoskovitz, S., Gal, S.: ‘Automatic mechanical system diagnosis’, 22 October 2012. US Patent App. 13/657,037.
-
-
9)
-
1. Pan, S.J., Yang, Q.: ‘A survey on transfer learning’, IEEE Trans. Knowl. Data Eng., 2010, 22, pp. 1345–1359 (doi: 10.1109/TKDE.2009.191).
-
-
10)
-
[4]. Lee, E.A., Seshia, S.A.: ‘Introduction to embedded systems: a cyber-physical systems approach’ (MIT Press, Cambridge, Massachusetts, 2016).
-
-
11)
-
[6]. Fortino, G., Trunfio, P.: ‘Internet of things based on smart objects: technology, middleware and applications’ (Springer, New York, USA, 2014).
-
-
12)
-
[10]. Theodoridis, S., Koutroumbas, K.: ‘Pattern recognition’ (Elsevier Science, USA, 2008).
-
-
13)
-
[5]. Hassan, Q.F., Khan, A.R., Madani, S.A.: ‘Internet of things: challenges, advances, and applications. Chapman & Hall/CRC computer and information science series’ (CRC Press, Boca Raton, Florida, 2017).
-
-
14)
-
[17]. Cohn, D.: ‘Active Learning’, in Sammut, C., Webb, G.I. (Eds.): ‘ Encyclopedia of Machine Learning and Data Mining (Springer, New York, USA, 2017), pp. 9–14.
-
-
15)
-
[21]. Hastie, T., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning: data mining, inference, and prediction’, in Diggle, P., Gather, U., Zeger, S. (Eds.): ‘Springer series in statistics’ (Springer, New York, 2013).
-
-
16)
-
[23]. Kaplan, J.: ‘Artificial intelligence: what everyone needs to know. What everyone needs to know’ (Oxford University Press, Oxford, UK, 2016).
-
-
17)
-
[18]. Jha, S., Seshia, S.A.: ‘A theory of formal synthesis via inductive learning’, Acta Inform., 2017, 54, (7), pp. 693–726 (doi: 10.1007/s00236-017-0294-5).
-
-
18)
-
[3]. Monostori, L., Kádár, B., Bauernhansl, T., et al: ‘Cyber-physical systems in manufacturing’, CIRP Ann., 2016, 65, (2), pp. 621–641 (doi: 10.1016/j.cirp.2016.06.005).
-
-
19)
-
[13]. Fan, J., Han, F., Liu, H.: ‘Challenges of big data analysis’, Natl Sci. Rev., 2014, 1, (2), pp. 293–314 (doi: 10.1093/nsr/nwt032).
-
-
20)
-
[29]. Edwards, C.: ‘Over the hills & far away [sensors and IoT]’, Eng. Technol., 2016, 11, (6), pp. 60–63 (doi: 10.1049/et.2016.0605).
-
-
21)
-
[22]. Holler, J., Tsiatsis, V., Mulligan, C., et al: ‘From machine-to-machine to the internet of things: introduction to a new age of intelligence’ (Academic Press, Cambridge, UK, 2014).
-
-
22)
-
[32]. Gershenfeld, N.: ‘When things start to think: integrating digital technology into the fabric of our lives’ (Henry Holt and Company, Augury Systems, Haifa, Israel, 2014).
-
-
23)
-
[25]. Appadurai, A.S., Kumar, D.: ‘Performance analysis of ZigBee and OWC in wireless body area network’, Small, 2016, 5, (3), pp. 564–567.
-
-
24)
-
[24]. Câmara, D., Nikaein, N.: ‘Wireless public safety networks 2: a systematic approach’ (Elsevier Science, USA, 2016).
-
-
25)
-
[12]. Leskovec, J., Rajaraman, A., Ullman, J.D.: ‘Mining of massive datasets’ (Cambridge University Press, Cambridge, UK, 2014).
-
-
26)
-
[30]. Bor, M., Vidler, J.E., Roedig, U.: ‘Lora for the internet of things’. Proc. 2016 Int. Conf. Embedded Wireless Systems and Networks, EWSN ‘16, Graz, Austria, 2016, pp. 361–366.
-
-
27)
-
[1]. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: ‘Machine learning: an artificial intelligence approach’ (Springer Science & Business Media, Berlin, Germany, 2013).
-
-
28)
-
[28]. Coskun, V., Ozdenizci, B., Ok, K.: ‘A survey on near field communication (NFC) technology’, Wirel. Pers. Commun., 2013, 71, (3), pp. 2259–2294 (doi: 10.1007/s11277-012-0935-5).
-
-
29)
-
[16]. Halder, A., Ghosh, S., Ghosh, A.: ‘Aggregation pheromone metaphor for semi-supervised classification’, Pattern Recognit., 2013, 46, (8), pp. 2239–2248 (doi: 10.1016/j.patcog.2013.01.002).
-
-
30)
-
[8]. Baheti, R., Gill, H.: ‘Cyber-physical systems’, Impact Control Technol., 2011, 12, pp. 161–166.
-
-
31)
-
[34]. Guo, B., Zhang, D., Yu, Z., et al: ‘From the internet of things to embedded intelligence’, World Wide Web, 2013, 16, (4), pp. 399–420 (doi: 10.1007/s11280-012-0188-y).
-
-
32)
-
[9]. Gorman, M.M.: ‘Database management systems: understanding and applying database technology’ (Elsevier Science, USA, 2014).
-
-
33)
-
[7]. Yang, L.T., Di Martino, B., Zhang, Q.: ‘Internet of everything’, Mobile Inf. Syst., 2017, 2017, pp. 1–3.
-
-
34)
-
[27]. Shelby, Z., Bormann, C.: ‘6LoWPAN: the wireless embedded internet, vol. 43’ (John Wiley & Sons, New Jersey, USA, 2011).
-
-
1)
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.1008

Related content
content/journals/10.1049/trit.2018.1008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
