http://iet.metastore.ingenta.com
1887

access icon openaccess Two-phase clustering algorithm with density exploring distance measure

  • PDF
    827.490234375Kb
  • XML
    94.7880859375Kb
  • HTML
    106.0244140625Kb
Loading full text...

Full text loading...

/deliver/fulltext/trit/3/1/TRIT.2018.0006.html;jsessionid=6pht9egc64c1o.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2ftrit.2018.0006&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
      • [2]. Hartigan, J.A., Wong, M.A.: ‘Algorithm as 136: a k-means clustering algorithm’, J. R. Stat. Soc. C, Appl. Stat., 1979, 28, (1), pp. 100108.
    3. 3)
      • [3]. Wang, W., Yang, J., Muntz, R., et al: ‘STING: a statistical information grid approach to spatial data mining’. Proc. of the 23rd Int. Conf. on Very Large Data Bases, Athens, Greece, 1997, pp. 186195.
    4. 4)
      • [4]. Agrawal, R., Gehrke, J., Gunopulos, D., et al: ‘Automatic subspace clustering of high dimensional data for data mining applications’. Proc. of ACM-SIGMOND Int. Conf. Management on Data, Seattle, Washington, USA, 1998, pp. 94105.
    5. 5)
      • [5]. Guha, S., Rastogi, R., Shim, K.: ‘CURE: an efficient clustering algorithm for large databases’. Proc. of ACM-SIGMOND Int. Conf. Management on Data, Seattle, Washington, USA, 1998, pp. 7384.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • [9]. Meng, F., Li, H., Wu, Q., et al: ‘Globally measuring the similarity of superpixels by binary edge maps for superpixel clustering’, IEEE Trans. Circuits Syst. Video Technol., 2016, doi: 10.1109/TCSVT.2016.2632148.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • [20]. Wang, L., Bo, L., Jiao, L.: ‘A modified k-means clustering with a density-sensitive distance metric’. Proc. of the Int. Conf. on Rough Sets and Knowledge Technology, Chongquing, China, 2006, pp. 544551.
    21. 21)
      • [21]. Gong, M., Jiao, L., Wang, L., et al: ‘Density-sensitive evolutionary clustering’. Proc. of the 11th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Nanjing, China, 2007, pp. 507514.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • [25]. Kang, Z., Peng, C., Cheng, Q.: ‘Twin learning for similarity and clustering: a unified kernel approach’. AAAI, San Francisco, California, USA, 2017, pp. 20802086.
    26. 26)
    27. 27)
      • [27]. Zhou, D., Bousquet, O., Lal, T.N., et al: ‘Learning with local and global consistency’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2004, pp. 321328.
    28. 28)
    29. 29)
    30. 30)
      • [30]. Bousquet, O., Chapelle, O., Hein, M.: ‘Measure based regularization’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2004, pp. 12211228.
    31. 31)
      • [31]. Blum, A., Chawla, S.: ‘Learning from labeled and unlabeled data using graph mincuts’. Proc. of the 18th Int. Conf. on Machine Learning (ICML), Williamstown, MA, USA, 2001, pp. 1926.
    32. 32)
      • [32]. Blake, C.L., Merz, C.J.: ‘UCI repository of machine learning databases’. Technical Report, Department of Information and Computer Science, University of California, Irvine, CA, 1998.
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.0006
Loading

Related content

content/journals/10.1049/trit.2018.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address