http://iet.metastore.ingenta.com
1887

access icon openaccess Decentralised grid scheduling approach based on multi-agent reinforcement learning and gossip mechanism

Loading full text...

Full text loading...

/deliver/fulltext/trit/3/1/TRIT.2018.0001.html;jsessionid=8osal87fipso1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2ftrit.2018.0001&mimeType=html&fmt=ahah

References

    1. 1)
      • [1]. Joseph, J., Fellenstein, C.: ‘Grid computing’ (Prentice-Hall, Upper Saddle River, NJ, USA, 2003).
    2. 2)
      • [2]. Chang, J.S., Chang, R.S.: ‘A probabilistic cost estimation model for Rfid real-time applications in data grids’, Int. J. Innov. Comput., Inf. Control, 2010, 6, (12), pp. 54215438.
    3. 3)
      • [3]. Dong, F.P., Akl, S.G.: ‘Scheduling algorithms for grid computing: state of the art and open problems’. Technical Report No. 2006-504, School of Computing, Queen's University, Kingston, Ontario, Canada, January 2006.
    4. 4)
    5. 5)
      • [5]. Izakian, H., Ladani, B., Abraham, A., et al: ‘A discrete particle swarm optimization approach for grid job scheduling’, Int. J. Innov. Comput., Inf. Control, 2010, 6, (9), pp. 42194233.
    6. 6)
    7. 7)
      • [7]. Lin, J.F.: ‘Performance analysis and discussion on a heuristic approach for scheduling multiprocessor tasks in a grid computing environment’, Int. J. Innov. Comput., Inf. Control, 2010, 6, (12), pp. 54515462.
    8. 8)
      • [8]. Brugnoli, M., Heymann, E., Senar, M.A., et al: ‘Grid scheduling based on collaborative random early detection strategies’. 18th Euromicro Conf. Parallel, Distributed and Network-based Processing, Pisa, Italy, February 2010, pp. 3542.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • [12]. Zhang, C.J., Lesser, V.P., Shenoy, P., et al: ‘A multi-agent learning approach to online distributed resource allocation’. Proc. of the IJCAI2009, Pasadena, CA, USA, July 2009, pp. 361366.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • [18]. Vasilakos, X., Sacha, J., Pierre, G., et al: ‘Decentralized as-soon-as-possible grid scheduling: a feasibility study’. Proc. 19th Int. Conf. Computer Communications and Networks (ICCCN), Zurich, Switzerland, August 2010, pp. 16.
    19. 19)
    20. 20)
    21. 21)
      • [21]. Huedo, E., Montero, R.S., Llorente, I.M., et al: ‘The gridway framework for adaptive scheduling and execution on grids’, Scalable Comput. Pract. Exp., 2005, 6, (3), pp. 18.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • [25]. Zheng, Q., Yang, H., Sun, Y., et al: ‘How to avoid herd: a novel stochastic algorithm in grid scheduling’. Proc. 15th IEEE Symp. on High Performance Distributed Computing, Paris, France, June 2006, pp. 267278.
    26. 26)
      • [26]. Tesauro, G., Jong, N.K., Das, R., et al: ‘A hybrid reinforcement learning approach to autonomic resource allocation’. IEEE Int. Conf. on Autonomic Computing, 2006 (ICAC ’06), Dublin, Ireland, June 2006, pp. 6573.
    27. 27)
      • [27]. Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an introduction’ (MIT Press, Cambridge, Massachusetts, 1998).
    28. 28)
    29. 29)
    30. 30)
      • [30]. Moradi, M.: ‘A centralized reinforcement learn method for multi-agent job scheduling in grid’. Proc. of the TCCKE 2016, Ferdowsi University of Mashhad, 20–21 October 2016, pp. 171176.
    31. 31)
      • [31]. Arabnejad, H., Pahl, C., Jamshidi, P., et al: ‘A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling’. IEEE ACM Int. Symp. on Cluster, Cloud and Grid Computing, Madrid, Spain, May 2017, pp. 6473.
    32. 32)
    33. 33)
      • [33]. Abdallahy, S., Lesser, V.: ‘Learning the task allocation game’. Proc. of the fifth AAMAS, Japan, 8–12 May 2006, pp. 850857.
    34. 34)
    35. 35)
      • [35]. Claus, C., Boutilier, C.: ‘The dynamics of reinforcement learning in cooperative multiagent systems’. Proc. of the 15th AAAI/IAAI-98, Madison, USA, 26–30 July 1998, pp. 746752.
    36. 36)
    37. 37)
      • [37]. Wang, X., Sandholm, T.: ‘Reinforcement learning to play an optimal Nash equilibrium in team Markov games’. Advances in Neural Information Proc. Systems 15(NIPS'02), Vancouver, 2003, pp. 15711578.
    38. 38)
      • [38]. Wang, Y., Silva, C.W.: ‘Multi-robot box-pushing: single-agent Q-learning vs. team Q-learning’. Proc. of the IROS2006, Beijing, China, 2006, pp. 36943699.
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.0001
Loading

Related content

content/journals/10.1049/trit.2018.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address