Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Visual navigation method for indoor mobile robot based on extended BoW model

This article proposes a new navigation method for mobile robots based on an extended bag of words (BoW) model for general object recognition in indoor environments. The scale-invariant feature transform (SIFT)-detection algorithm with the graphic processing unit (GPU) acceleration technology is used to describe feature vectors in this model. First, in order to add some redundant image information, statistical information of the spatial relationships of all the feature points in an image, i.e. relative distances and angles, is used to extend the feature vectors in the original BoW model. Then, the support vector machine (SVM) classifier is used to classify objects. Also, in order to navigate conveniently in unknown and dynamic indoor environments, a type of human–robot interaction method based on a hand-drawn semantic map is considered. The experimental results show that this new navigation technology for indoor mobile robots is very robust and highly effective.

References

    1. 1)
    2. 2)
      • [23]. Hartigan, J.A.: ‘Clustering algorithms’ (John Wiley and Sons, Inc., New York, NY, USA, 1975).
    3. 3)
      • [15]. Cheng, X., Wang, J., Chia, L., et al: ‘Learning to combine multi-resolution spatially-weighted co-occurrence matrices for image representation’. 2010 IEEE Int. Conf. on Multimedia and Expo (ICME), Suntec City, Singapore, 2010, pp. 631636.
    4. 4)
    5. 5)
      • [14]. Liu, X.L., Lou, Y.H., Yu, A.W., et al: ‘Search by mobile image based on visual and spatial consistency’. 2011 IEEE Int. Conf. on Multimedia and Expo (ICME), Barcelona, Spain, 2011, pp. 16.
    6. 6)
      • [9]. Skubic, M., Bailey, C., Chronis, G.: ‘A sketch interface for mobile robots’. Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), Washington DC, USA, 2003, vol. 1, pp. 919924.
    7. 7)
      • [4]. Wu, X.: ‘Visual navigation method research for mobile based on hand-drawn map’ (Nanjing Southeast University, Nanjing, 2011).
    8. 8)
      • [21]. David, G.: ‘Object recognition from local scale-invariant feature’. Proc. of the Seventh IEEE Int. Conf. on Computer Vision, Kerkyra, Greece, 1999, pp. 11501157.
    9. 9)
      • [5]. Li, X., Zhang, X., Dai, X.: ‘An interactive visual navigation method using a hand-drawn-route-map in an unknown dynamic environment’, Int. J. Fuzzy Syst., 2011, 13, (4), pp. 311322.
    10. 10)
    11. 11)
      • [18]. Lazebnik, S., Schmid, C., Ponce, J.: ‘Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories’. Proc. of the IEEE Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 21692178.
    12. 12)
    13. 13)
      • [20]. Chen, H.: ‘Research on object classifier based on distinguished learning’ (University of science and technology of China, He Fei, China, 2009).
    14. 14)
      • [6]. Kawamura, K., Peters, R.A.I., Wilkes, D.M., et al: ‘Toward perception-based navigation using EgoSphere’. Proc. for SPIE 4573, Mobile Robots XVI, Boston, MA, United States, October 2001.
    15. 15)
    16. 16)
      • [3]. Shamos, M.I., Hoey, D.: ‘Closest-point problems’. 16th Annual Symp. on Foundations of Computer Science, Berkeley, USA, 1975, pp. 151162.
    17. 17)
      • [24]. Sivic, J., Zisserman, A.: ‘Video google: a text retrieval approach to object matching in video’. Proc. of IEEE Int. Conf. on Computer Vision, Nice, France, 2003, vol. 2, pp. 14701477.
    18. 18)
      • [7]. Kawamura, K., Koku, A.B., Wilkes, D.M., et al: ‘Toward egocentric navigation’, Int. J. Rob. Autom., 2002, 17, (4), pp. 135145.
    19. 19)
      • [8]. Chronis, G., Skubic, M.: ‘Sketch-based navigation for mobile robots’. Proc. of the 12th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), St. Louis, USA, 2003, vol. 1, pp. 284289.
    20. 20)
    21. 21)
      • [1]. Thrun, S.: ‘Robotic mapping: a survey’. CMU-CS-02-111, School of Computer Science, Carnegie Meiion University, Pittsburgh, 2002.
    22. 22)
      • [16]. Sun, M., Hamme, V.: ‘Image pattern discovery by using the spatial closeness of visual code words’. 2011 18th IEEE Int. Conf. on Image Processing, Brussels, Belgium, 2011, pp. 205208.
    23. 23)
      • [17]. Elsayad, I., Martinet, J., Urruty, T., et al: ‘A new spatial weighting scheme for bag-of-visual-words’. 2010 Int. Workshop on Content-Based Multimedia Indexing, Grenoble, France, 2010, pp. 16.
    24. 24)
      • [12]. Liu, T., Liu, J., Liu, Q.S., et al: ‘Expanded bag of words representation for object classification’. Processing of 2009 16th IEEE Int. Conf. on Image, Cairo, Egypt, 2009, pp. 297300.
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2017.0020
Loading

Related content

content/journals/10.1049/trit.2017.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address