Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Cellular growth and division in the Gillespie algorithm

Cellular growth and division in the Gillespie algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent experimental studies elucidating the importance of noise in gene regulation have ignited widespread interest in Gillespie's stochastic simulation technique for biochemical networks. We formulate modifications to the Gillespie algorithm which are necessary to correctly simulate chemical reactions with time-dependent reaction rates. We concentrate on time dependence of kinetic rates arising from the periodic process of growth and division of the cellular volume, and demonstrate that a careful re-derivation of the Gillespie algorithm is important when all stochastically simulated reactions have rates slower or comparable to the cellular growth rate. For an unregulated single-gene system, we illustrate our findings using recently proposed hybrid simulation techniques, and systematically compare our algorithm with analytic results obtained from the chemical master equation.

References

    1. 1)
      • N.G.V. Kampen . (1992) Stochastic Processes in Physics and Chemistry.
    2. 2)
      • E.L. Haseltine , J.B. Rawlings . Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. , 15 , 6959 - 6969
    3. 3)
      • E.M. Ozbudak , M. Thattai , I. Kurtser , A.D. Grossman , A. van Oudenaarden . Regulation of noise in the expression of a single gene. Nat. Gen.
    4. 4)
      • D.T. Gillespie . (1992) Markov Processes: An Introduction for Physical Scientists.
    5. 5)
      • A. Arkin , J. Ross , H.H. McAdams . Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics
    6. 6)
      • D. Gillespie . General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J. Comput. Phys. , 403 - 434
    7. 7)
      • D. Adalsteinsson , D. McMillen , T. Elston . Biochemical network stochastic simulator (bionets): Software for stochastic modeling of biochemical networks. BMC Bioinformatics
    8. 8)
      • T.C. Gard . (1988) Introduction to Stochastic Differential Equations.
    9. 9)
      • W.J. Blake , M. Kaern , C.R. Cantor , J.J. Collins . Noise in eukaryotic gene expression. Nature , 633 - 637
    10. 10)
      • R.M. Corless . On The Lambert W Function. Adv. Comp. Math. , 329 - 359
    11. 11)
      • T.S. Gardner , C.R. Cantor , J.J. Collins . Construction of a genetic toggle switch in Escherichia coli. Nature , 339 - 342
    12. 12)
      • C.V. Rao , D.M. Wolf , A.P. Arkin . Control, exploitation and tolerance of intracellular noise. Nature , 231 - 237
    13. 13)
      • A. Kierzek . Stocks: Stochastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics , 3 , 470 - 481
    14. 14)
      • T. Kepler , T. Elston . Stochasticity in transcriptional regulation: origins, consequences and mathematical representations. Biophys, J.
    15. 15)
      • A. Becskei , L. Serrano . Engineering stability in gene networks by autoregulation. Nature
    16. 16)
      • M.B. Elowitz , S. Leibler . A synthetic oscillatory network of transcriptional regulators. Nature
    17. 17)
      • F.J. Isaacs , J. Hasty , C.R. Cantor , J.J. Collins . Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA , 7714 - 7719
    18. 18)
      • R.N. Stuart , E.W. Branscomb . Quantitative theory of in vivo lac regulation: Significance of repressor packaging. J. Theor. Biol. , 313 - 329
    19. 19)
      • M.L. Simpson , C.D. Cox , G.S. Sayler . Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl. Acad. Sci. USA , 8 , 4551 - 4556
    20. 20)
      • C.V. Rao , A.P. Arkin . Stochastic chemical kinetics and the quasi steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. , 4999 - 5010
    21. 21)
      • P.S. Swain , M.B. Elowitz , E.D. Siggia . Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA , 12795 - 12800
    22. 22)
      • J. Hasty , J. Pradines , M. Dolnik , J.J. Collins . Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA
    23. 23)
      • D.T. Gillespie . Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. , 25 , 2340 - 2361
    24. 24)
      • A. Becskei , B. Séraphin , L. Serrano . Positive feedback in eukaryotic gene networks: Cell differentiation by graded to binary response conversion. EMBO J.
    25. 25)
      • M.A. Gibson , J. Bruck . Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. , 1876 - 1889
    26. 26)
      • M. Elowitz , A. Levine , E. Siggia , P. Swain . Stochastic gene expression in a single cell. Science , 1183 - 1186
http://iet.metastore.ingenta.com/content/journals/10.1049/sb_20045016
Loading

Related content

content/journals/10.1049/sb_20045016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address