Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Cellular growth and division in the Gillespie algorithm

Cellular growth and division in the Gillespie algorithm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent experimental studies elucidating the importance of noise in gene regulation have ignited widespread interest in Gillespie's stochastic simulation technique for biochemical networks. We formulate modifications to the Gillespie algorithm which are necessary to correctly simulate chemical reactions with time-dependent reaction rates. We concentrate on time dependence of kinetic rates arising from the periodic process of growth and division of the cellular volume, and demonstrate that a careful re-derivation of the Gillespie algorithm is important when all stochastically simulated reactions have rates slower or comparable to the cellular growth rate. For an unregulated single-gene system, we illustrate our findings using recently proposed hybrid simulation techniques, and systematically compare our algorithm with analytic results obtained from the chemical master equation.

http://iet.metastore.ingenta.com/content/journals/10.1049/sb_20045016
Loading

Related content

content/journals/10.1049/sb_20045016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address