Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Analysis of structural robustness of metabolic networks

Analysis of structural robustness of metabolic networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We study the structural robustness of metabolic networks on the basis of the concept of elementary flux modes. It is shown that the number of elementary modes itself is not an appropriate measure of structural robustness. Instead, we introduce three new robustness measures. These are based on the relative number of elementary modes remaining after the knockout of enzymes. We discuss the relevance of these measures with the help of simple examples, as well as with larger, realistic metabolic networks. Thereby we demonstrate quantitatively that the metabolism of Escherichia coli, which must be able to adapt to varying conditions, is more robust than the metabolism of the human erythrocyte, which lives under much more homeostatic conditions.

References

    1. 1)
      • J.S. Edwards , B.O. Palsson . Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. , 927 - 939
    2. 2)
      • M.L. Mavrovouniotis , G. Stephanopoulos , G. Stephanopoulos . Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. , 1119 - 1132
    3. 3)
      • M. Kato , K. Mizuno , A. Crozier , T. Fujimura , H. Ashihara . Caffeine synthase gene from tea leaves. Nature , 956 - 957
    4. 4)
      • C. Salerno , A. Giacomello . Hypoxanthine-guanine exchange by intact human erythrocytes. Biochem. , 1306 - 1309
    5. 5)
      • T. Dandekar , F. Moldenhauer , S. Bulik , H. Bertram , S. Schuster . A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. BioSystems , 255 - 270
    6. 6)
      • S. Klamt , J. Stelling . Two approaches for metabolic pathway analysis?. Trends Biotechnol. , 64 - 69
    7. 7)
      • O. Ebenhöh , R. Heinrich . Stoichiometric design of metabolic networks: multifunctionality, clusters, optimization, weak and strong robustness. Bull. Math. Biol. , 323 - 357
    8. 8)
      • P.J. Mulquiney , P.W. Kuchel . Model of 2,3-biphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem. J. , 581 - 596
    9. 9)
      • M.V. Martinov , A.G. Plotnikov , V.M. Vitvitsky , F.I. Ataullakhanov . Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta. , 75 - 87
    10. 10)
      • S. Klamt , E.D. Gilles . Minimal cut sets in biochemical reaction networks. Bioinformatics , 226 - 234
    11. 11)
      • M.G. Poolman , D.A. Fell , C.A. Raines . Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur. J. Biochem. , 430 - 439
    12. 12)
      • J.A. Papin , N.D. Price , J.S. Edwards , B.O. Palsson . The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. , 67 - 82
    13. 13)
      • B.M. Bakker , F.I.C. Mensonides , B. Teusink , P. Van Hoek , P.A.M. Michels , H.V. Westerhoff . Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc. Natl. Acad. Sci. U.S.A. , 2087 - 2092
    14. 14)
      • R. Carlson , F. Srienc . Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnol. Bioeng. , 1 - 19
    15. 15)
      • N.D. Price , J.A. Papin , B.O. Palsson . Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. , 760 - 769
    16. 16)
      • S. Schuster , R. Schuster . Detecting strictly detailed balanced subnetworks in open chemical reaction networks. J. Math. Chem. , 17 - 40
    17. 17)
      • M. Morohashi , A.E. Winn , M.T. Borisuk , H. Bolouri , J. Doyle , H. Kitano . Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. , 19 - 30
    18. 18)
      • T. Çakir , B. Kirdar , K.Ö. Ülgen . Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. , 251 - 260
    19. 19)
      • A. Joshi , B.O. Palsson . Metabolic dynamics in the human red cell. Part I. A comprehensive kinetic model. J. Theor. Biol. , 515 - 528
    20. 20)
      • B.O. Palsson , N.D. Price , J.A. Papin . Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol. , 195 - 198
    21. 21)
      • Oancea, I.: `Topological analysis of metabolic and regulatory networks by decomposition methods', 2003, PhD thesis, Humboldt University, Berlin, Germany.
    22. 22)
      • S. Schuster , D.A. Fell , T. Pfeiffer , T. Dandekar , P. Bork , C. Larsson , I.-L. Påhlman , L. Gustafsson . (1998) Elementary modes analysis illustrated with human red cell metabolism, BioThermoKinetics in the Post Genomic Era.
    23. 23)
      • S. Schuster , C. Hilgetag . On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. , 165 - 182
    24. 24)
      • H. Kacser , R. Beeby . Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection. J. Mol. Evol. , 38 - 51
    25. 25)
      • C. Wagner . Systembiologie gegen Parasiten. BioWorld , 1 , 2 - 4
    26. 26)
      • T. Pfeiffer , I. Sánchez-Valdenebro , J.C. Nuño , F. Montero , S. Schuster . METATOOL: For studying metabolic networks. Bioinformatics , 251 - 257
    27. 27)
      • E.A. Winzeler , D.D. Shoemaker , A. Astromoff , H. Liang , K. Anderson , B. Andre . Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science , 901 - 906
    28. 28)
      • J.S. Edwards , B.O. Palsson . Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. , 17410 - 17416
    29. 29)
      • R. Schuster , H.G. Holzhütter . Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur. J. Biochem. , 403 - 418
    30. 30)
      • J. Stelling , S. Klamt , K. Bettenbrock , S. Schuster , E.D. Gilles . Metabolic network structure determines key aspects of functionality and regulation. Nature , 190 - 193
    31. 31)
      • J.M. Rohwer , F.C. Botha . Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. , 437 - 445
    32. 32)
      • S. Schuster , D.A. Fell , T. Dandekar . A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. , 326 - 332
    33. 33)
      • S. Klamt , J. Stelling , M. Ginkel , E.D. Gilles . FluxAnalyzer: Exploring structure, pathways, and fluxes in balanced metabolic networks by interactive flux maps. Bioinformatics , 261 - 269
    34. 34)
      • G. Giaever , A.M. Chu , L. Ni , C. Connelly , L. Riles . Functional profiling of the Saccharomyces cerevisiae genome. Nature , 387 - 391
    35. 35)
      • D. Bossi , B. Giardina . Red cell physiology. Mol. Asp. Med. , 117 - 128
    36. 36)
      • C.R. Scriver , W.L. Sly . (1995) The Metabolic and Molecular Bases of Inherited Disease.
    37. 37)
      • T. Çakir , C.S. Tacer , K.Ö. Ülgen . Metabolic pathway analysis of enzyme-deficient human red blood cells. BioSystems
    38. 38)
      • S.J. Wiback , B.O. Palsson . Extreme pathway analysis of human red blood cell metabolism. Biophys. J. , 808 - 818
    39. 39)
      • N. Barkai , S. Leibler . Robustness in simple biochemical networks. Nature , 913 - 917
http://iet.metastore.ingenta.com/content/journals/10.1049/sb_20045004
Loading

Related content

content/journals/10.1049/sb_20045004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address