Analysis of structural robustness of metabolic networks
Analysis of structural robustness of metabolic networks
- Author(s): T. Wilhelm ; J. Behre ; S. Schuster
- DOI: 10.1049/sb:20045004
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): T. Wilhelm 1 ; J. Behre 2 ; S. Schuster 3
-
-
View affiliations
-
Affiliations:
1: Institute of Molecular Biotechnology, Theoretical Systems Biology Group, Jena, Germany
2: Institute of Molecular Biotechnology, Friedrich Schiller University Jena, Germany
3: Faculty of Biology and Pharmaceutics, Section of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
-
Affiliations:
1: Institute of Molecular Biotechnology, Theoretical Systems Biology Group, Jena, Germany
- Source:
Volume 1, Issue 1,
June 2004,
p.
114 – 120
DOI: 10.1049/sb:20045004 , Print ISSN 1741-2471, Online ISSN 1741-248X
We study the structural robustness of metabolic networks on the basis of the concept of elementary flux modes. It is shown that the number of elementary modes itself is not an appropriate measure of structural robustness. Instead, we introduce three new robustness measures. These are based on the relative number of elementary modes remaining after the knockout of enzymes. We discuss the relevance of these measures with the help of simple examples, as well as with larger, realistic metabolic networks. Thereby we demonstrate quantitatively that the metabolism of Escherichia coli, which must be able to adapt to varying conditions, is more robust than the metabolism of the human erythrocyte, which lives under much more homeostatic conditions.
Inspec keywords: cellular biophysics; molecular biophysics; physiological models; stability; enzymes; microorganisms; blood
Other keywords: human erythrocyte; metabolic networks; structural robustness; homeostatic conditions; elementary flux modes; enzymes; Escherichia coli
Subjects: Systems theory applications in biology and medicine; General, theoretical, and mathematical biophysics; Molecular biophysics; Cellular biophysics
References
-
-
1)
- J.S. Edwards , B.O. Palsson . Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. , 927 - 939
-
2)
- M.L. Mavrovouniotis , G. Stephanopoulos , G. Stephanopoulos . Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. , 1119 - 1132
-
3)
- M. Kato , K. Mizuno , A. Crozier , T. Fujimura , H. Ashihara . Caffeine synthase gene from tea leaves. Nature , 956 - 957
-
4)
- C. Salerno , A. Giacomello . Hypoxanthine-guanine exchange by intact human erythrocytes. Biochem. , 1306 - 1309
-
5)
- T. Dandekar , F. Moldenhauer , S. Bulik , H. Bertram , S. Schuster . A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. BioSystems , 255 - 270
-
6)
- S. Klamt , J. Stelling . Two approaches for metabolic pathway analysis?. Trends Biotechnol. , 64 - 69
-
7)
- O. Ebenhöh , R. Heinrich . Stoichiometric design of metabolic networks: multifunctionality, clusters, optimization, weak and strong robustness. Bull. Math. Biol. , 323 - 357
-
8)
- P.J. Mulquiney , P.W. Kuchel . Model of 2,3-biphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem. J. , 581 - 596
-
9)
- M.V. Martinov , A.G. Plotnikov , V.M. Vitvitsky , F.I. Ataullakhanov . Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta. , 75 - 87
-
10)
- S. Klamt , E.D. Gilles . Minimal cut sets in biochemical reaction networks. Bioinformatics , 226 - 234
-
11)
- M.G. Poolman , D.A. Fell , C.A. Raines . Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur. J. Biochem. , 430 - 439
-
12)
- J.A. Papin , N.D. Price , J.S. Edwards , B.O. Palsson . The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. , 67 - 82
-
13)
- B.M. Bakker , F.I.C. Mensonides , B. Teusink , P. Van Hoek , P.A.M. Michels , H.V. Westerhoff . Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc. Natl. Acad. Sci. U.S.A. , 2087 - 2092
-
14)
- R. Carlson , F. Srienc . Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnol. Bioeng. , 1 - 19
-
15)
- N.D. Price , J.A. Papin , B.O. Palsson . Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. , 760 - 769
-
16)
- S. Schuster , R. Schuster . Detecting strictly detailed balanced subnetworks in open chemical reaction networks. J. Math. Chem. , 17 - 40
-
17)
- M. Morohashi , A.E. Winn , M.T. Borisuk , H. Bolouri , J. Doyle , H. Kitano . Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. , 19 - 30
-
18)
- T. Çakir , B. Kirdar , K.Ö. Ülgen . Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. , 251 - 260
-
19)
- A. Joshi , B.O. Palsson . Metabolic dynamics in the human red cell. Part I. A comprehensive kinetic model. J. Theor. Biol. , 515 - 528
-
20)
- B.O. Palsson , N.D. Price , J.A. Papin . Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol. , 195 - 198
-
21)
- Oancea, I.: `Topological analysis of metabolic and regulatory networks by decomposition methods', 2003, PhD thesis, Humboldt University, Berlin, Germany.
-
22)
- S. Schuster , D.A. Fell , T. Pfeiffer , T. Dandekar , P. Bork , C. Larsson , I.-L. Påhlman , L. Gustafsson . (1998) Elementary modes analysis illustrated with human red cell metabolism, BioThermoKinetics in the Post Genomic Era.
-
23)
- S. Schuster , C. Hilgetag . On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. , 165 - 182
-
24)
- H. Kacser , R. Beeby . Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection. J. Mol. Evol. , 38 - 51
-
25)
- C. Wagner . Systembiologie gegen Parasiten. BioWorld , 1 , 2 - 4
-
26)
- T. Pfeiffer , I. Sánchez-Valdenebro , J.C. Nuño , F. Montero , S. Schuster . METATOOL: For studying metabolic networks. Bioinformatics , 251 - 257
-
27)
- E.A. Winzeler , D.D. Shoemaker , A. Astromoff , H. Liang , K. Anderson , B. Andre . Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science , 901 - 906
-
28)
- J.S. Edwards , B.O. Palsson . Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. , 17410 - 17416
-
29)
- R. Schuster , H.G. Holzhütter . Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur. J. Biochem. , 403 - 418
-
30)
- J. Stelling , S. Klamt , K. Bettenbrock , S. Schuster , E.D. Gilles . Metabolic network structure determines key aspects of functionality and regulation. Nature , 190 - 193
-
31)
- J.M. Rohwer , F.C. Botha . Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. , 437 - 445
-
32)
- S. Schuster , D.A. Fell , T. Dandekar . A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. , 326 - 332
-
33)
- S. Klamt , J. Stelling , M. Ginkel , E.D. Gilles . FluxAnalyzer: Exploring structure, pathways, and fluxes in balanced metabolic networks by interactive flux maps. Bioinformatics , 261 - 269
-
34)
- G. Giaever , A.M. Chu , L. Ni , C. Connelly , L. Riles . Functional profiling of the Saccharomyces cerevisiae genome. Nature , 387 - 391
-
35)
- D. Bossi , B. Giardina . Red cell physiology. Mol. Asp. Med. , 117 - 128
-
36)
- C.R. Scriver , W.L. Sly . (1995) The Metabolic and Molecular Bases of Inherited Disease.
-
37)
- T. Çakir , C.S. Tacer , K.Ö. Ülgen . Metabolic pathway analysis of enzyme-deficient human red blood cells. BioSystems
-
38)
- S.J. Wiback , B.O. Palsson . Extreme pathway analysis of human red blood cell metabolism. Biophys. J. , 808 - 818
-
39)
- N. Barkai , S. Leibler . Robustness in simple biochemical networks. Nature , 913 - 917
-
1)
Related content
