Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

High data rate transmissions over h.f. links

High data rate transmissions over h.f. links

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Radio and Electronic Engineer — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A review is presented of the problems inherent in transmitting data over h.f. links. The propagation medium imposes characteristics of time and frequency dispersion, fading and delay distortion upon the transmitted signal, particularly when wide bandwidths are used. The magnitude and variability of these features are quantified and a simplified expression for the received signal is derived. Techniques that have been used to transmit high data rates over h.f. links are summarized and their relative merits compared. It is concluded that the ionosphere continues to be a limiting factor in the design of an efficient modem, but that recent developments in microelectronics provide the potential to make a significant improvement in the performance of future communication systems.

References

    1. 1)
      • D.D. Falconer , L. Ljung . Application of fast Kalman estimation to adaptive equalization. IEEE Trans. Com. , 1439 - 1446
    2. 2)
      • J.M. Headrick , M.I. Skolnik . Over the horizon radar in the h.f. band. Proc. IEEE , 664 - 674
    3. 3)
      • H.H. Inston . Dispersion of h.f. pulses by ionospheric reflection. Proc. Instn. Elect. Engrs. , 1789 - 1793
    4. 4)
      • M.S. Zimmerman , A.L. Kirsch . The AN/GSC-10 (KATHRYN) variable rate data modem for hf radio. IEEE Trans. Com. Tech. , 197 - 204
    5. 5)
      • N.M. Maslin . Assessing the circuit reliability of an h.f. sky-wave air-ground link. The Radio and Electronic Engineer , 493 - 503
    6. 6)
      • M.J. di Toro . Communication in time-frequency spread media using adaptive equalization. Proc. IEEE , 1653 - 1679
    7. 7)
      • S. Tsuruta . DP-100 voice recognition system achieves high efficiency. J. Japan Inst. Elect. Engrs , 50 - 55
    8. 8)
      • A.W. Pierce . Effective application of forward-acting errorcontrol coding to multichannel h.f. data modems. IEEE Trans.Com. , 281 - 294
    9. 9)
      • G.F. Gott , J.P. Newsome . H.f. data transmission using chirp signals. Proc. Instn Elect. Engrs , 1162 - 1166
    10. 10)
      • Maslin, N.M.: `H.f. communications to small low flying aircraft', Agard conf. proc. 263-special topics in h.f. propagation, 1979, Lisbon.
    11. 11)
      • G.C. Porter . Error distribution and diversity performance of a frequency differential psk h.f. modem. IEEE Trans. Com. Tech. , 567 - 575
    12. 12)
      • Struszynski, W., Gott, G.F.: `A review and comparison of adaptive and dpsk systems for high data rate transmission at h.f.', IEE Conference on Signal Processing for Radio Telephony, 1970.
    13. 13)
      • K. Davies , D.M. Baker . On frequency variations of ionospherically propagated h.f. radio signals. Radio Science , 545 - 556
    14. 14)
      • F. David . Correlation measurements on an h.f. transmission link. IEEE Trans. Com. Tech. , 245 - 256
    15. 15)
      • Interstate Electronics Corporation-Sales Literature 1981..
    16. 16)
      • C.C. Watterson . Experimental confirmation of an h.f. channel model. IEEE Trans. Com. Tech. , 792 - 803
    17. 17)
      • M.L. Doelz . Binary data transmission techniques for linear systems. Proc. IRE , 656 - 661
    18. 18)
      • R.H. Clarke , D.V. Tibbie . Measurement of the elevation angles of arrival of multicomponent h.f. skywaves. Proc. Instn Elect. Engrs , 17 - 24
    19. 19)
      • R.A. Scholtz . The spread spectrum concept. IEEE Trans. Com. , 748 - 755
    20. 20)
      • A. Malaga , R.E. McIntosh . Delay and doppler power spectra of a fading ionospheric reflection channel. Radio Science , 859 - 873
    21. 21)
      • P.A. Bradley . Long-term h.f. propagation predictions for radio circuit planning. The Radio and Electronic Engineer , 31 - 41
    22. 22)
      • G.F. Gott , M.J.D. Staniforth . Characteristics of interfering signals in aeronautical voice channels. Proc. Instn Elect. Engrs , 1208 - 1212
    23. 23)
      • L.R. Rabiner , R.W. Schafer . (1978) , Digital Processing of Speech Signals.
    24. 24)
      • D. Chase . A combined coding and modulation approach for communication over dispersive channels. IEEE Trans. Com. , 159 - 175
    25. 25)
      • Sloggett, D.R.: `Improving the reliability of h.f. data transmissions', IEE Coll. Digest 1979/48-‘Recent Advances in H.F. Communications Systems and Techniques’, 1979, p. 74–78.
    26. 26)
      • R.A. Shepherd , J.B. Lomax . Frequency spread in ionospheric radio propagation. IEEE Trans. Com. Tech. , 268 - 275
    27. 27)
      • Burgess, B.: `Trends in future airborne communications systems', IEE Colloquium digest 1980/41-The Impact of New L.S.I. Techniques on Communication Systems, 1980, p. 127–131.
    28. 28)
      • K. Davies . (1966) , Ionospheric Radio Propagation.
    29. 29)
      • L.W. Barclay . Ionospheric prediction techniques. Marconi Rev. , 51 - 66
    30. 30)
      • B. Goldberg . 300 kHz-30 MHz m.f./h.f.. IEEE Trans. Com. Tech. , 767 - 784
http://iet.metastore.ingenta.com/content/journals/10.1049/ree.1982.0011
Loading

Related content

content/journals/10.1049/ree.1982.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address