http://iet.metastore.ingenta.com
1887

An expansion method for calculation of low-frequency Hall effect and magneto-resistance

An expansion method for calculation of low-frequency Hall effect and magneto-resistance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Radio and Electronic Engineer — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The potential equation in three dimensions for a semiconductor, placed in an external magnetic field, is derived. This equation is solved by an expansion technique. The first-order expansion gives the Hall effect, whereas the second-order describes the magneto-resistance effect. The theory is applied to a rectangular and a cylindrical volume, which are treated analytically.

References

    1. 1)
      • R. Bonnefille , G. Chevalier , Q. Guichard . Contribution à l'étude de la répartition du potentiel dans les éléments à effet Hall. Solid State Electronics , 141 - 145
    2. 2)
      • J.L. Becquevort . Dispositif analogique pour la determination du potentiel dans les éléments à effet Hall. Solid State Electronics , 147 - 153
    3. 3)
      • I. de Sabata . Le champ éléctrique des générateurs à effet Hall placés dans des champs magnétiques variables. Revue E , 355 - 361
    4. 4)
      • G. de Mey . Integral equation for the potential distribution in a Hall generator. Electronics Letters , 264 - 266
    5. 5)
      • G. de Mey . Field calculations in Hall samples. Solid State Electronics , 955 - 957
    6. 6)
      • L.J. van der Pauw . A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports , 1 - 9
    7. 7)
      • J.P. Newsome , W.H. Silber . The resistance matrix and electrical characteristics of the symmetrical rectangular Hall plate with different electrode configurations. Solid State Electronics , 631 - 643
    8. 8)
      • G. de Mey . Influence of sample geometry on Hall mobility measurements. Archiv für Elektronik und Uebertragungstechnik , 309 - 313
    9. 9)
      • J. Lange . Method for Hall mobility and resistivity measurements on thin layers. J. Appl. Phys.
    10. 10)
      • J. Haeusler , H. Lippmann . Hallgeneratoren mit kleinem Linearisierungsfehler. Solid State Electronics , 173 - 182
    11. 11)
      • A. Many , Y. Goldstein , N.B. Grover . (1965) , Semiconductor Surfaces.
    12. 12)
      • J. van Bladel . (1964) , Electromagnetic Fields.
    13. 13)
      • B. Lax , B.J. Button . loc. cit..
    14. 14)
      • R. Courant , D. Hilbert . (1968) , Methoden der Mathematischen Physik.
    15. 15)
      • M. ABRAMOWITZ , I.A. STEGU . (1972) , Handbook of Mathematical Functions.
    16. 16)
      • O. Madelung . (1970) , Grundlagen der Halbleiterphysik.
    17. 17)
      • S. Wang . (1966) , Solid State Electronics.
http://iet.metastore.ingenta.com/content/journals/10.1049/ree.1974.0088
Loading

Related content

content/journals/10.1049/ree.1974.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address