http://iet.metastore.ingenta.com
1887

Choice of models for the identification of linear multivariable discrete-time systems

Choice of models for the identification of linear multivariable discrete-time systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Proceedings of the Institution of Electrical Engineers — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A critical study is presented of the relative effectiveness of four types of models which have been used in the area of linear multivariable discrete-time systems identification. Each model's features and their effect on the complexity of the identification algorithm are studied. The structural parameters required to characterise each model and the number of parameters to be estimated are examined and compared. The characteristics of the parameter estimates of each model when using the least-squares method are also investigated. Results of a simulated example are given which show the advantages and disadvantages of each model when used for identification.

References

    1. 1)
      • N.S. Rajbman , N.K. Sinha . Identification of multivariable systems: a critical survey. Int. J. Syst. Sci. , 1415 - 1427
    2. 2)
      • B.A. Abaza . Multivariable parameter estimation using a 2-step least-squares estimator. Electron. Lett. , 331 - 333
    3. 3)
      • S. Sinha , P.E. Caines . On the use of register sequences as instrumental variables for the recursive indentification of multivariable linear systems. Int. J. Syst. Sci. , 1041 - 1055
    4. 4)
      • Mital, D.P., Chen, C.T.: `Identification of multivariable systems from input-output data', Proceedings of International Conference on System, 1974, Man and Cybernetics, p. 422–426.
    5. 5)
      • A. Sen , N.K. Sinha . On-line estimation of the parameters of a multivariable system using matrix pseudo-inverse. Int. J. Syst. Sci. , 461 - 471
    6. 6)
      • R.K. Mehra . On-line identification of linear dynamic systems with, applications to Kalman filtering. IEEE Trans. , 12 - 21
    7. 7)
      • H. El-Sherief , N.K. Sinha . A nonparametric normalized stochastic approximation algorithm for on-line identification of multi-variable systems. Int. J. Syst. Sci. , 333 - 338
    8. 8)
      • N.K. Sinha , A.K. Mahalanabis , H. El-Sherief . A non-parametric approach to the identification of linear multivariable systems. Int. J. Syst. Sci. , 420 - 430
    9. 9)
      • R.L. Kashyap , R.E. Nasburg . Parameter estimation in multi-variable stochastic difference equations. IEE Trans. , 784 - 797
    10. 10)
      • E.J. Hannan . The identification program for multiple equation systems with moving average errors. Econometric , 751 - 765
    11. 11)
      • H. Akaike . Maximum likelihood identification of Gaussian autoregressive moving average errors. Biometrika , 255 - 265
    12. 12)
      • B.W. Dickinson , T. Kailath , M. Morf . Canonical matrix fraction and state-space descriptions for deterministic and stochastic linear systems. IEEE Trans. , 656 - 667
    13. 13)
      • R. Guidorzi . Canonical structures in the identification of multivariable systems. Automatica , 361 - 374
    14. 14)
      • N.K. Sinha , Y.H. Kwong . Recursive identification of the parameters of linear multivariable systems. Automatica , 471 - 475
    15. 15)
      • H. El-Sherief , N.K. Sinha . Algorithm for identification of multivariable systems combining stochastic approximation and pseudo-inverse. Autom. Control Theory & Appl. , 37 - 41
    16. 16)
      • Furuta, K.: `An application of realization theory to identification of multivariable process', Proceedings of 3rd IFAC Symposium on Identification and System Parameter Estimation, 1973, The Hague, p. 939–941.
    17. 17)
      • R.N. Lobbia , G.N. Saridis . Identification and control of multivariable stochastic discrete systems. J. Cybern. , 40 - 59
    18. 18)
      • H. El-Sherief , N.K. Sinha . Stochastic approximation for the identification of linear multivariable systems. IEEE Trans. , 331 - 333
    19. 19)
      • Weinert, H., Anton, J.: `Canonical forms for multivariable system identification', Proceedings of IEEE Conference on Decision and Control, 1972, p. 37–39.
    20. 20)
      • E. Tse , H.L. Weinert . Structure determination and parameter identification for multivariable stochastic linear systems. IEEE Trans. , 603 - 613
    21. 21)
      • Bingulac, S.P., Farias, M.A.C.: `Identification and minimal realization of multivariable systems', Proceedings of IFAC Conference on Multivariable Technical Systems, 1977, Canada, p. 373–377.
    22. 22)
      • M.J. Denham . Canonical forms for the identification of multivariable linear systems. IEEE Trans. , 646 - 656
    23. 23)
      • H. El-Sherief , N.K. Sinha . Bootstrap estimation of parameters and states of linear multivariable systems. IEEE Trans. , 340 - 343
http://iet.metastore.ingenta.com/content/journals/10.1049/piee.1979.0234
Loading

Related content

content/journals/10.1049/piee.1979.0234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address