http://iet.metastore.ingenta.com
1887

Online identification of linear discrete-time multivariable systems

Online identification of linear discrete-time multivariable systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Proceedings of the Institution of Electrical Engineers — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A unified recursive algorithm is presented for identifying linear discrete-time multivariable systems from the input/output data which may be contaminated with noise. The system is represented in the form of a transfer-function matrix, and decomposed into subsystems corresponding to each row. The proposed algorithm is based on determining the order of each subsystem utilising the residual-error technique. This is followed by estimation of parameters using a recursive adaptive least-squares algorithm. Results of simulation are included.

References

    1. 1)
      • H. El-Sherief , N.K. Sinha . Identification and modeling for linear multivariable discrete-time systems—a survey. J. Cybern. (USA) , 43 - 71
    2. 2)
      • W.A. Wolovich . (1974) , Linear multivariable systems.
    3. 3)
      • A.V. Mathew , F.W. Fairman . Transfer function matrix identification. IEEE Trans. , 584 - 588
    4. 4)
      • Furuta, K.: `An application of realization theory to identification of multivariable process', Proceedings of 3rd IFAC Symposium on Identification and System Parameter Estimation, 1973, The Hague, p. 939–941.
    5. 5)
      • Mital, D.P., Chen, C.T.: `Identification of multivariable systems from input-output data', Proceedings of the International Conference on Systems, 1974, Man and Cybernetics, p. 422–426.
    6. 6)
      • A. Sen , N.K. Sinha . On-line estimation of the parameters of a multivariable system using matrix pseudo-inverse. Int. J. Syst. Sci. , 461 - 471
    7. 7)
      • B.A. Abaza . Multivariable Parameter estimation using a 2-step least squares estimator. Electron. Lett. , 331 - 333
    8. 8)
      • S. Sinha , P.E. Caines . On the use of register sequence as instrumental variables for the recursive identification of multivariable linear systems. Int. J. Syst. Sci. , 1041 - 1055
    9. 9)
      • L.C. Suen , R. Liu . Determination of the structure of multivariable stochastic linear systems. IEEE Trans. , 458 - 464
    10. 10)
      • Panuska, V.: `Adaptive recursive least squares identification algorithm', Proceedings of the 8th IEEE Symposium Adaptive Processes, 1969.
    11. 11)
      • K.J. Aström , P. Eykhoff . System identification—a survey. Automatica , 123 - 162
    12. 12)
      • N.K. Sinha , W. Pille . On-line parameter estimation using the matrix pseudo-inverse. Proc. IEE , 1041 - 1046
    13. 13)
      • A. Albert . (1972) , Regression and the Moore-Penrose pseudoinverse.
    14. 14)
      • H. El-Sherief , N.K. Sinha . Algorithm for identification of multivariable systems combining stochastic approximation and pseudoinverse. Autom. Control Theory & Appl. , 37 - 40
http://iet.metastore.ingenta.com/content/journals/10.1049/piee.1979.0233
Loading

Related content

content/journals/10.1049/piee.1979.0233
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address