© The Institution of Electrical Engineers
An analytic method for the reconstruction of the profiles of refractive indexes of inhomogeneous, stratified regions is presented. The reflection coefficient r(k) for timeharmonic electromagnetic waves is represented as a rational function of k, the wave number. 1dimensional inverse scattering theory has been applied to obtain analytic, closedform expressions for the profile functions q(x) from r(k). The profile reconstruction method is demonstrated with a 3pole r(k), that results in a q(x) which resembles an ionospheric electrondensity profile previously analysed by direct scattering methods. The present communication generalises previous results to oblique incidence and compares several.q(x) obtained from different rational approximations to r(k).
References


1)

Colin, L.: `Mathematics of profile inversion', TMX62.150, NASA technical memorandum, 1972.

2)

R.M. Lewis
.
Physical optics inverse diffraction.
IEEE Trans.
,
308 
314

3)

E.R. Westwater ,
A. Cohen
.
Application of BackusGilbert inversion technique to determination of aerosol size distributions from optical scattering measurements.
Appl. Opt.
,
1340 
1348

4)

R.G. Newton
.
Inverse problems in physics.
Soc. Ind. Appl. Math. Rev.
,
346 
356

5)

J.C. Bolomey ,
C. Durix ,
D. Lesselier
.
Time domain integral equation approach for inhomogeneous and dispersive slab problems.
IEEE Trans.
,
658 
668

6)

K.G. Budden
.
(1961)
, Radio waves in the ionosphere.

7)

I. Kay
.
The inverse scattering problem when the reflection coefficient is a rational function.
Comm. Pure Appl. Math.
,
371 
393

8)

I.M. Gelfand ,
I.M. Levitan
.
On the determination of a differential equation from its spectral function.
Trans. Amer. Math. Soc.
,
253 
304

9)

K. Chadan ,
P.C. Sabatier
.
(1977)
, Inverse problems in quantum scattering theory.

10)

L.D. Faddeev
.
The inverse problem in the quantum theory of scattering.
J. Math. Phys.
,
72 
104

11)

A.C. Scott ,
F.Y. Chu ,
D.W. McLaughlin
.
The soliton — a new concept in physical science.
Proc. IEEE
,
1443 
1483

12)

S. Ahn ,
A.K. Jordan
.
Profile inversion of simple plasmas and nonuniform regions: threepole reflection coefficient.
IEEE Trans.
,
879 
882

13)

A.K. Jordan ,
H.N. Kritikos
.
An application of onedimensional inversescattering theory for inhomogeneous regions.
IEEE Trans.
,
909 
911

14)

H.H. Szu ,
C.E. Carroll ,
C.C. Yang ,
S. Ahn
.
Reformulation of the plasma inverse problem.
J. Math. Phys.
,
1236 
1247

15)

V. Bargmann
.
On the number of bound states in a central field of force.
Proc. Nat. Acad. Sci., (USA)
,
961 
966

16)

A.R. Sims
.
Certain aspects of the inverse scattering problem.
J. Soc. Ind. Appl. Math.
,
183 
205

17)

G.N. Balanis
.
The plasma inverse problem.
J. Math. Phys.
,
1001 
1005
http://iet.metastore.ingenta.com/content/journals/10.1049/piee.1979.0175
Related content
content/journals/10.1049/piee.1979.0175
pub_keyword,iet_inspecKeyword,pub_concept
6
6