http://iet.metastore.ingenta.com
1887

Absolute stability of a class of nonlinear sampled-data systems

Absolute stability of a class of nonlinear sampled-data systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Proceedings of the Institution of Electrical Engineers — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The present investigation studies the problem of absolute stability of a class of nonlinear sampled-data control systems with or without integrators in the loop. An absolute-stability criterion has been obtained by the second method of Lyapunov. The same stability criterion has been derived previously by the authors via the Popov approach. The criterion is shown to be a sufficient condition for the existence of a certain type of Lyapunov function which assures global-asymptotic stability of the class of systems under investigation. In contrast to previous results, the criterion does not place any restriction on the number of integrators in the loop. A systematic step-by-step method for applying the inequality is given, and an example illustrating the application of this frequency-domain inequality and a comparison with previous results are presented. The method is found to be versatile and more effective, and, in general, a better stability boundary can be obtained.

References

    1. 1)
      • YA.Z. Tsypkin . On the global stability of nonlinear automatic sampled-data systems. Soviet Pliys. Dok , 592 - 594
    2. 2)
      • YA.Z. Tsypkin . Fundamentals of the theory of nonlinear pulsecontrol systems. Automat. Remote Control , 172 - 180
    3. 3)
      • E.I. Jury , B.W. Lee . On the stability of a certain class of nonlinear sampled-data systems. IEEE Trans. , 51 - 61
    4. 4)
      • E.I. Jury , B.W. Lee . On the absolute stability of nonlinear sampled-data systems. IEEE Trans. , 551 - 554
    5. 5)
      • V.M. Popov . Absolute stability of nonlinear systems of automatic control. Automat. Remote Control , 857 - 875
    6. 6)
      • G.P. Szegö , R.E. Kalman . Sur la Stabilité absolue d'un sysètme d'équations aux différences finies. CR Acad. Sci. , 388 - 390
    7. 7)
      • G.P. Szegö . Sur la stabilité absolue d'un systéme non linéaire discret. CR Acad. Sci. , 1749 - 1751
    8. 8)
      • G.P. Szegö . On the absolute stability of sampled-data control systems. Proc. Nat. Acad. Sci. USA , 558 - 560
    9. 9)
      • G.P. Szegö , J.B. Pearson . On the absolute stability of sampled-data systems: The indirect-control case. IEEE Trans. , 160 - 163
    10. 10)
      • E.I. Jury , B.W. Lee . The absolute stability of systems with many nonlinearities. Automat. Remote Control , 943 - 961
    11. 11)
      • Jury, E.I., Lee, B.W.: `A stability theory for multinonlinear control systems', Session 28A, Proceedings of the 3rd international IFAC congress, 1966, 1, , 2.
    12. 12)
      • J.I. Soliman , H. Kwoh . A frequency stability criterion for a class of nonlinear sampled-data system with a pure lag. Internat. J. Control , 579 - 590
    13. 13)
      • W. Hahn . Über die Anwendung der Methode von Lyapunov auf Differenzengleichungen. Math. Ann. , 430 - 441
    14. 14)
      • R.E. Kalman , J.E. Bertram . Control-systems analysis and design via the second method of Lyapunov. Pt. 2—Discrete time systems. Trans. ASME , 3 , 371 - 400
    15. 15)
      • R.E. Kalman . Mathematical description of dynamic systems. J. SIAM Control , 152 - 192
    16. 16)
      • J.B. Pearson , J.E. Gibson . On the asymptotic stability of a class of sampled-data systems. IEEE Trans. Applic. Industr. , 81 - 84
    17. 17)
      • S. Kodama . Stability of nonlinear sampled-data control systems. IEEE Trans. Applic. Industr. , 15 - 23
    18. 18)
      • M.A. Aizerman , F.R. Gantmacher . (1964) , Absolute stability of regulator systems.
    19. 19)
      • S. Lefschetz . (1965) , Stability of nonlinear control systems.
    20. 20)
      • J.I. Soliman , H. Kwoh . , On the absolute stability of automatic-control systems.
    21. 21)
      • K.S. Narendra , C.P. Neuman . Stability of a class of differential equations with a single monotone nonlinearity. J. SIAM Control , 295 - 308
    22. 22)
      • V.A. Yakubovitch . Frequency conditions for the absolute stability and dissipativity of control systems with a single differentiable nonlinearity. Soviet Math. , 98 - 100
    23. 23)
      • R.P. Iwens , A.R. Bergen . On bounded-input/bounded-output stability of a certain class of nonlinear sampled-data systems. J. Franklin Inst. , 193 - 205
    24. 24)
      • J. Lin , P.P. Varaiya . Bounded-input/bounded-output stability of nonlinear time-varying discrete-control systems. IEEE Trans. , 423 - 427
    25. 25)
      • R.P. Iwens , A.R. Bergen . Frequency criteria for boundedinput/bounded-output stability of nonlinear sampled-data systems. IEEE Trans. , 46 - 53
    26. 26)
      • Nease, R.F.: `Analysis and design of nonlinear sampled-data systems', 57–162, MIT Technical Report, June 1957.
http://iet.metastore.ingenta.com/content/journals/10.1049/piee.1969.0029
Loading

Related content

content/journals/10.1049/piee.1969.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address