Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes

Access Full Text

Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Titanium dioxide nanotubes were investigated as an adsorbent for the uranyl ion from solution under UV irradiation. Results from X-ray photoelectron spectroscopy analysis clearly indicate the reduction of U(VI) to U(IV) on the oxide surface.

Inspec keywords: titanium compounds; ultraviolet radiation effects; semiconductor materials; photochemistry; X-ray photoelectron spectra; reduction (chemical); catalysts

Other keywords: anatase nanotubes; uranyl ion; X-ray photoelectron spectroscopy analysis; TiO2; titanium dioxide nanotubes; UV irradiation; oxide surface; reduction; photocatalytic activation

Subjects: Photoemission and photoelectron spectra (condensed matter); Radiation effects (semiconductor technology); Ultraviolet, visible and infrared radiation effects; Heterogeneous catalysis at surfaces and other surface reactions; Photolysis and photodissociation by IR, UV and visible radiation; Oxide and ferrite semiconductors; Specific chemical reactions; reaction mechanisms

References

    1. 1)
      • R. Amadelli , A. Maldotti , S. Sostero , V. Carassiti . Photodeposition of uranium oxides onto TiO2 from aqueous uranyl soutions. J. Chem. Soc. Faraday Trans. , 19 , 3267 - 3273
    2. 2)
      • L.X. Chen , T. Rajh , Z. Wang , M.C. Thurnauer . XAFS studies of surface structure of TiO2 nanoparticles and photocatalytic reduction of metal ions. J. Phys. Chem. B , 50 , 10688 - 10697
    3. 3)
      • G.C. Allen , P.M. Tucker , J.W. Tyler . Oxidation of uranium dioxide at 298K studied by using X-ray photoelectron spectroscopy. J. Phys. Chem. , 2 , 224 - 228
    4. 4)
      • C.J. Evans , G.P. Nicholson , D.A. Faith , M.J. Kan . Photochemical removal of uranium from a phosphate waste solution. Green Chem. , 4 , 196 - 197
    5. 5)
      • G.C. Allen , J.A. Curtis , P.M. Tucker , D. Chadwick , P.J. Hampson . X-ray photoelectron spectroscopy of some uranium oxide phases. J. Chem. Soc. Dalton Trans. , 12 , 1296 - 1301
    6. 6)
      • T.B. Scott , G.C. Allen , P.J. Heard , M. Randell . Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim. Cosmochim. Acta , 24 , 5639 - 5646
    7. 7)
      • M. Ferguson , M.R. Hoffmann , J.G. Hering . TiO2-photocatalyzed As(III) oxidation in aqueous suspensions: reaction kinetics and effect of adsorption. Environ. Sci. Technol. , 6 , 1880 - 1886
    8. 8)
      • D.A. Gong , C. Grimes , O.K. Varghese . Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. , 12 , 3331 - 3334
    9. 9)
      • C.D. Wagner , L.E. Davis , M.V. Zeller , J.A. Taylor , R.H. Raymond , L.H. Gale . Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. , 5 , 211 - 225
    10. 10)
      • J. Yu , H. Yu , B. Cheng , M. Zhou , X. Zhao . Enhance photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J. Mol. Catal. A , 112 - 118
    11. 11)
      • S.A. Blimes , P. Mandelbaum , F. Alvarez , N.M. Victoria . Surface and electronic structure of titanium dioxide photocatalyst. J. Phys. Chem. B , 42 , 9851 - 9858
    12. 12)
      • V. Eliet , G. Bidoglio . Kinetic of the laser-induced photoreduction of U(VI) in aqueous suspension of TiO2 particles. Environ. Sci. Technol. , 20 , 3155 - 3161
    13. 13)
      • G.C. Allen , N.R. Holmes . Surface characterisation of α-, β-, γ-, and δ-UO3 using X-ray photoelectron spectroscopy. J. Chem. Soc. Dalton Trans. , 12 , 3009 - 3015
    14. 14)
      • J. Dalton , P.A. Janes , N.G. Jones , J.A. Nicholson , K.R. Hallam , G.C. Allen . Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environ. Pollut. , 2 , 415 - 422
    15. 15)
      • G.C. Allen , N.R. Holmes . Mixed valency behaviour in some uranium oxides studies by X-ray photoelectron spectroscopy. Can. J. Appl. Spectrosc. , 5 , 124 - 130
    16. 16)
      • R. Sanjines , H. Tang , H. Berger , F. Gozzo , G. Margaritondo , F. Levy . Electronic structure of anatase TiO2 oxide. J. Appl. Phys. , 6 , 2945 - 2951
    17. 17)
      • B. Ohtani , Y. Ogawa , S. Nishimoto . Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended on aqueous solutions. J. Phys. Chem. B , 19 , 3746 - 3752
    18. 18)
      • E. Selli , V. Eliet , M.R. Spini , G. Bidoglio . Effects of humic acid on the photoinduced reduction of U(VI) in the presence of semiconducting TiO2 particles. Environ. Sci. Technol. , 17 , 3742 - 3748
    19. 19)
      • J. Chen , D.F. Ollis , W.H. Rulkens , H. Bruning . Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Coll. Surf. , 339 - 349
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl_20080007
Loading

Related content

content/journals/10.1049/mnl_20080007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading