Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size

Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The mechanical properties of polymer nanoparticles as a function of their size were measured using atomic force microscopy (AFM). A novel protocol was developed, and the elastic modulus of individual nanospherical particles was computed from AFM ‘force–distance’ mapping curves. To eliminate the tip geometry, hemispherical tungsten (W) tip was fabricated using a focused ion beam under controlled conditions and was used as an indenter. It is found that the nanospherical polypropylene (PP) particles have a higher elastic modulus compared to the bulk. The results corroborate the robustness of our experiments as the analogous results for bulk match well with the literature.

References

    1. 1)
      • Kar, K.K., Paik, P.: `A process for preparation of nanoparticles of higher molecular weight polyethylene, polypropylene and polystyrene', Indian Patent 3161/DEL/2005, 2005.
    2. 2)
    3. 3)
      • T.M. Aminabhavi , P.E. Cassidy , C.M. Thompson . Electrical resistivity of carbon- black-loaded rubbers. Rubber Chem. Technol. , 451 - 471
    4. 4)
      • J. Drelich , J. Long , Z. Xu , J. Masliyah , C.L. White . Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina. J. Coll. Interface Sci. , 627 - 638
    5. 5)
      • G. Holden , N.R. Legge , G. Holden , N.R. Legge , R.P. Quirk , H.E. Schroeder . (1996) Styrenic thermoplastic elastomers, Thermoplastic elastomer.
    6. 6)
      • B.P. Grady , S.L. Cooper , J.E. Mark , B. Erman , F.R. Eirich . (2005) Thermoplastic elastomer, Science and technology of rubber.
    7. 7)
      • X. Xu , Z. Zhang , H. Wu , X. Ge , M. Zhang . Polymerization of styrene in anionic microemulsion with high monomer content. Polymer , 5245 - 5248
    8. 8)
      • H. Bao , Z. Chen , J. Liu . Production of ordered arrays of polymer nanoparticles. Colloid J. , 257 - 259
    9. 9)
      • I.N. Sneddon . The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. , 47 - 57
    10. 10)
      • J. Drelich , G.W. Tormoen , E.R. Beach . Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J. Coll. Interface Sci. , 2 , 484 - 497
    11. 11)
      • B. Drake , C.B. Prater , A.L. Weisenhorn , S.A. Gould , T.R. Albrecht , C.F. Quate , D.S. Cannell , H.G. Hansma , P.K. Hansma . Imaging crystals, polymers, and processes in water with the atomic force microscope. Science , 1586 - 1589
    12. 12)
      • P. Chatterjee , R. Doering . The future of micro electronics. Proc. IEEE , 176 - 183
    13. 13)
      • S. Kishimoto , N. Shinya . Mechanical property of metallic closed cellular materials containing organic material for passive damping and energy-absorbing systems. J. Intell. Mater. Syst. Struct. , 271 - 275
    14. 14)
      • G. Plantard , M. Papini . Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model. Granular Mater. , 1 - 12
    15. 15)
    16. 16)
      • W.A. Ducker , T.J. Senden , R.M. Pashley . Measurement of forces in liquids using a force microscope. Langmuir , 7 , 1831 - 1836
    17. 17)
      • L.D. Landau , E.M. Lifshitz . (1970) Theory of elasticity.
    18. 18)
      • P. Paik , K.K. Kar . High molecular weight polypropylene nanospheres: synthesis and characterization. J. Appl. Polym. Sci. , 1133 - 1143
    19. 19)
      • N.C. Hilyard , S.G. Tong , K. Harrison . Influence of the cure system on the properties of vulcanizates incorporating whole tire scrap rubber crumb. Plast. Rubber Proc. Appl. , 315 - 322
    20. 20)
      • B.D. Beake , S. Chen , J.B. Hull , F.J. Gao . Nanoindentation behavior of clay/poly(ethylene oxide) nanocomposites. J. Nanosci. Nanotechnol. , 1 , 73 - 79
    21. 21)
      • J.E. McAlvin , C.L. Fraser . Metal-centered star block copolymers: amphiphilic iron tris(bipyridine)-centered polyoxazolines and their chemical fragmentation to bipyridine-centered BAB triblock copolymers. Macromolecules , 1341 - 3147
    22. 22)
      • C.P. O'Farrell , M. Gerspacher , L. Nikiel . Carbon black dispersion by electrical measurements. Kautsch. Gummi Kunstst. , 701 - 710
    23. 23)
      • U.D. Schwarz , O. Zworner , P. Koster , R. Wiesendanger . Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys. Rev., B, Condens. Matter , 11 , 6987 - 6996
    24. 24)
    25. 25)
      • A.I. Medalia . Electrical conduction in carbon black composites. Rubber Chem. Technol. , 432 - 454
    26. 26)
      • J.P. Cleveland , S. Manne , D. Bocek , P.K. Hansma . A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Inst., 1993 , 2 , 403 - 405
    27. 27)
      • M.R. Pokhrel , K. Janik , S.H. Bossmann . Photoinitiated synthesis and characterization of P(MMA/DPB) polymer nanoparticles using poly(N-isopropylacrylamide) in aqueous solutions as a template. Macromolecules , 3577 - 3584
    28. 28)
    29. 29)
      • H. Kristiansen , Z.L. Zhang , J. Liu . Characterization of mechanical properties of metal-coated polymer spheres for anisotropic conductive adhesive. IEEE Conf. (Advanced Packaging Materials: Process, Properties and Interfaces) , 209 - 213
    30. 30)
      • S. Armini , I.U. Vakarelski , C.M. Whelan , K. Maex , K. Higashitani . Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy. Langmuir , 4 , 2007 - 2014
    31. 31)
      • Kar, K.K., Paik, P.: `A process for preparation of mocron sized high molecular weight polymer', Indian Patent 2503/DEL/2004, 2004.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl_20070030
Loading

Related content

content/journals/10.1049/mnl_20070030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address