http://iet.metastore.ingenta.com
1887

Multipurpose nanomechanical testing machines revealing the size-dependent strength and high ductility of pure aluminium submicron films

Multipurpose nanomechanical testing machines revealing the size-dependent strength and high ductility of pure aluminium submicron films

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The mechanical properties measurement of materials with submicron dimensions is extremely challenging, from the preparation and manipulation of specimens, to the application of small loads and extraction of accurate stresses and strains. A novel, versatile concept of micro and nano-machines to test films or beams with characteristic dimensions ranging between 10 and 1000 nm, allowing multiple loading configurations and geometries, is described. This new nanotesting method has been applied to thin, pure aluminium films. The yield strength linearly increases with the inverse of the film thickness, reaching 625 MPa for 150 nm thickness which is ten times larger than for macroscopic samples. The strain hardening rate is large, similar to what is measured with macroscopic specimens. Unexpectedly, large strains equal to about 75% have been measured before the initiation of a stable ductile failure mode. This nanomechanical laboratory involves thousands of micromachines built onto a single silicon wafer, providing a unique platform for investigating the elementary mechanisms of deformation and fracture in nanoscale metal, polymer or ceramic samples.

References

    1. 1)
    2. 2)
      • E. van der Giessen , H. Aref , J.W. Philips . (2001) Plasticity in the 21st century, Mechanics for a new millenium.
    3. 3)
      • B.C. Prorok , H.S. Nalwa . (2004) Micro- and nanomechanics, Encyclopedia of nanoscience and nanotechnology.
    4. 4)
    5. 5)
      • N.M. Ghoniem . Multiscale modelling of nanomechanics and micromechanics: an overview. Phil. Mag. , 3475 - 3528
    6. 6)
      • W.D. Nix . Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Mater. Sci. Eng. A , 37 - 44
    7. 7)
    8. 8)
    9. 9)
      • M. Delincé , P.J. Jacques , T. Pardoen . Separation of size-dependent strengthening contributions in fine-grained dual-phase steels by nanoindentation. Acta Mater. , 2547 - 2555
    10. 10)
      • K. Durst . Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. , 3395 - 3404
    11. 11)
    12. 12)
    13. 13)
      • J.N. Florando , W.D. Nix . A microbeam method for studying stress-strain relations for metal thin films on silicon substrates. J. Mech. Phys. Solids , 619 - 638
    14. 14)
      • Tsai, H.C.: `A reliable test key for thin film mechanical properties characterization', Proc. 12th Int. Conf. on Solid State Sensors, Actuators and Microsystems, 8–12 June 2003, Boston, p. 452–455.
    15. 15)
    16. 16)
      • L. Nicola . Plastic deformation of freesting thin films: experiments and modelling. J. Mech. Phys. Solids , 2089 - 2110
    17. 17)
      • J.S. Stolken , A.G. Evans . A microbend test method for measuring the plasticity length scale. Acta Mater. , 5109 - 5115
    18. 18)
      • L.B. Freund , S. Suresh . (2003) Thin film materials.
    19. 19)
      • R. Venkatraman , J.C. Bravman . Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J. Mater. Res. , 2040 - 2048
    20. 20)
    21. 21)
    22. 22)
      • W.N. Sharpe . Fracture strength of silicon carbide microspecimens. J. Mems. , 903 - 913
    23. 23)
      • M.A. Haque , M.T.A. Saif . Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. , 6335 - 6340
    24. 24)
    25. 25)
    26. 26)
      • T. Tsuchiya . Cross comparison of thin-film tensile testing methods examined using single-crystal silicon, polysilicon, nickel and titanium films. J. Microelectromech Syst. , 903 - 913
    27. 27)
    28. 28)
      • F. Iker , N. André , T. Pardoen , J.-P. Raskin . One-mask CMOS compatible process for the fabrication of three-dimensional self-assembled thin film SOI MEMS. Electroch. Solid-State Lett. , H87 - H89
    29. 29)
      • F. Iker , N. André , T. Pardoen , J.-P. Raskin . Three-dimensional self-assembled sensors in thin film SOI technology. IEEE J. Microelectromech. Syst. , 6 , 1687 - 1697
    30. 30)
      • L.B. Freund . The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. , 553 - 557
    31. 31)
      • Y. Wang . High tensile ductility in a nanostructured metal. Nature , 912 - 914
    32. 32)
      • (2004) User's manual.
    33. 33)
    34. 34)
      • C.W. Sinclair , W.J. Poole , Y. Brechet . A model for the grain size dependent work hardening of copper. Scr. Mater.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl_20065068
Loading

Related content

content/journals/10.1049/mnl_20065068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address