access icon free Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application

Copper oxide/manganese dioxide (CuO/MnO2) nanocomposites were prepared by a facile microwave-assisted synthesis method in an ordinary household microwave oven and used for electrochemical supercapacitor. The nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical results demonstrate that CuO/MnO2 nanocomposites have better capacitance performance than pure CuO material. The CuO/MnO2 nanocomposites have a high specific capacitance of 499.0 F/g at a current density of 0.5 A/g in 6 M KOH electrolyte. In addition, an asymmetric supercapacitor with activated carbon as a negative electrode and CuO/MnO2 nanocomposite as a positive electrode was also successfully prepared. This asymmetric device exhibits a high energy density of 32.07 Wh/kg at a power density of 375.02 W/kg and fairly good cycling stability.

Inspec keywords: X-ray photoelectron spectra; X-ray diffraction; current density; electrolytes; capacitance; microwave materials processing; manganese compounds; scanning electron microscopy; nanofabrication; nanocomposites; transmission electron microscopy; microwave ovens; electrochemical electrodes; copper compounds; supercapacitors; semiconductor materials; semiconductor growth; activated carbon

Other keywords: copper oxide-manganese dioxide; cycling stability; scanning electron microscopy; KOH electrolyte; supercapacitor; energy density; X-ray photoelectron spectroscopy; CuO-MnO2 nanocomposites; microwave oven; microwave-assisted synthesis; transmission electron microscopy; specific capacitance; current density; electrochemical supercapacitor; negative electrode; CuO-MnO2; power density; X-ray diffraction; activated carbon

Subjects: Capacitors; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Other methods of nanofabrication; Electrochemistry and electrophoresis; Photoelectron spectra of composite surfaces; Low-dimensional structures: growth, structure and nonelectronic properties; Electron spectroscopy for chemical analysis (photoelectron, Auger spectroscopy, etc.); Composite materials (engineering materials science); Nanometre-scale semiconductor fabrication technology; Storage in electrical energy

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2020.0400
Loading

Related content

content/journals/10.1049/mnl.2020.0400
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading