access icon free Fabrication and photocatalytic performance of C, Pt-comodified TiO2 nanotubes

Compared with common TiO2 powder, TiO2 nanotubes can exhibit better catalytic performance for their high specific surface area. By using hydrogen TiO2 nanotubes synthesised via the hydrothermal process as carriers, carbon and platinum co-modified TiO2 nanotubes (C-Pt/TiO2NTs) were prepared via impregnation–photoreduction method in this study. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectrum were used to characterise the structure and composition of the prepared samples. Their catalytic activities for degrading methyl orange under ultraviolet (UV) illumination and simulated sunlight were evaluated. The influences and mechanism of dopants and their contents on the catalysts’ activity were investigated. Obtained results indicated that the modification can improve the photocatalytic activity of TiO2 nanotubes under both UV light and simulated sunlight. Among them, C-Pt/TiO2NTs with 0.5 wt% Pt exhibited the best performance.

Inspec keywords: X-ray photoelectron spectra; scanning electron microscopy; nanotubes; X-ray diffraction; ultraviolet spectra; visible spectra; titanium compounds; photocatalysts; carbon; transmission electron microscopy; platinum; photocatalysis; nanofabrication; nanoparticles

Other keywords: platinum-comodified titanium dioxide nanotubes; simulated sunlight; carbon; X-ray diffraction; catalytic performance; impregnation-photoreduction method; infrared spectra; hydrogen titanium dioxide nanotubes; high specific surface area; transmission electron microscopy; common titanium dioxide powder; X-ray photoelectron spectroscopy; photocatalytic performance; methyl orange degradation; TiO2:C,Pt; hydrothermal process

Subjects: Electron spectroscopy for chemical analysis (photoelectron, Auger spectroscopy, etc.); Heterogeneous catalysis at surfaces and other surface reactions; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Photocatalysis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 27. Kasuga, T., Hiramatsu, M., Hoson, A., et al: ‘Formation of titanium oxide nanotube’, ACS Pub., 1998, 14, (12), pp. 31603163.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 29. Lin, L., Zhou, Y., Zhu, Y.X., et al: ‘Effect of carbon content on photocatalytic activity of C/TiO2 composite’, Chinese J. Catal., 2006, 27, (1), pp. 4549.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 21. Al-Hajji, L.A., Ismail, A.A., Alseidi, M., et al: ‘Green approach and ease synthesis of C/N-codoped TiO2 nanocrystals for photodegradation of endocrine’, J. Nanopart. Res., 2020, 22, (2), article no. 50.
    29. 29)
    30. 30)
      • 17. Qi, D.M., Cao, J., Gao, Y.J., et al: ‘Photocatalysis of polysiloxane/titanium sol photocatalytic composite films’, Acta Polym. Sin., 2015, 1, pp. 17.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2020.0357
Loading

Related content

content/journals/10.1049/mnl.2020.0357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading