Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electrochemical growth and characterisation of ZnO nanostructures for dye-sensitised solar cells

This Letter presents the electrodeposition of zinc oxide (ZnO) nanostructures by varying the negative potential and investigation of structural, optical, and morphological characteristics. UV–vis spectroscopy investigation showed the redshift of the absorption peak with the increased negative potential. Using Tauc relation, the optical bandgap values estimated to be 3.09, 2.97, 2.93, 2.91, 2.90, and 2.84 eV corresponding to the samples prepared at potential −0.5, −0.7, −0.9, −1.1, −1.3 and −1.5 V. Fluorescence spectra exhibited the UV emission band at wavelength 392 nm along with a peak at 650 nm corresponds to the second-order nature of ZnO. Fourier-transform infrared spectroscopy analysis confirmed the various vibration modes at 403, 493, and 702 cm−1 originated by the ZnO nanostructures. X-ray diffraction pattern revealed the hexagonal wurtzite phase of ZnO. Scanning electron microscopy investigation evidenced the distinct morphology of ZnO with the increased negative potential; however, the dense and perpendicularly oriented ZnO nanorods are prepared at highest negative potential as compared to rice grain-like ZnO structure prepared at least negative potential. Furthermore, the prepared nanostructures are used as dye-sensitised solar cells (DSSCs) photoanodes, while the DSSC-Z6 showed the increased cell efficiency up to 1.2%, due to the aligned growth of the ZnO nanorods.

Inspec keywords: visible spectra; ultraviolet spectra; semiconductor thin films; X-ray diffraction; nanofabrication; optical constants; fluorescence; II-VI semiconductors; scanning electron microscopy; wide band gap semiconductors; electrochemical electrodes; dye-sensitised solar cells; nanorods; energy gap; semiconductor growth; electrodeposition; Fourier transform infrared spectra; photoluminescence; red shift; zinc compounds

Other keywords: X-ray diffraction; ZnO nanostructures; voltage -0.5 V; Fourier-transform infrared spectroscopy; scanning electron microscopy; UV emission band; dye-sensitised solar cells photoanodes; fluorescence spectra; ZnO; negative potential; voltage -1.3 V; wavelength 650.0 nm; Tauc relation; electrodeposition; redshift; voltage -1.1 V; voltage -0.9 V; morphology; UV–vis spectroscopy; electrochemical growth; voltage -0.7 V; optical bandgap; voltage -1.5 V; wavelength 392.0 nm

Subjects: Deposition from liquid phases (melts and solutions); Nanofabrication using thin film deposition methods; Photoelectrochemical conversion; Optical constants and parameters (condensed matter); Thin film growth, structure, and epitaxy; Photoluminescence in II-VI and III-V semiconductors; Infrared and Raman spectra in inorganic crystals; Nanometre-scale semiconductor fabrication technology; II-VI and III-V semiconductors; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Low-dimensional structures: growth, structure and nonelectronic properties; Visible and ultraviolet spectra of II-VI and III-V semiconductors; Deposition from liquid phases; Solar cells and arrays; Electrochemistry and electrophoresis; Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures)

References

    1. 1)
      • 9. Marimuthu, T., Anandhan, N., Thangamuthu, R., et al: ‘Effect of hexamethylenetetramine on the properties of electrodeposited ZnO thin films for dye sensitized solar cell applications’, J. Mater. Sci.: Mater. Electron., 2018, 29, (15), pp. 1283012841.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 15. Fan, J.C., Chang, S.L., Xie, Z.: ‘Advanced materials and devices’ (Intech Open, UK, 2013).
    6. 6)
    7. 7)
    8. 8)
      • 10. Makkar, M, Bhatti, H.S., Singh, K.: ‘Effect of reaction conditions on the morphology and optical properties of ZnO nanocrystals', J. Mater. Sci.: Mater. Electron., 2014, 25, (11), pp. 48224829.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 16. Idiawati, R., Mufti, N., Taufiq, A., et al: ‘Effect of growth time on the characteristics of ZnO nanorods’, IOP Conf. Series: Mater. Sci. Eng., 2015, 202, pp. 012050-1012050-8.
    13. 13)
    14. 14)
    15. 15)
      • 5. Umar, A., Akhtar, M.S., Almas, T., et al: ‘Direct growth of flower-shaped ZnO nanostructures on FTO substrate for dye-sensitized solar cells', Crystals, 2019, 9, (405), pp. 113.
    16. 16)
      • 11. Urbina, J.E., Alonso, A.C., Gonzalez, M.S., et al: ‘Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican Landrace of red maize’, Nanomaterials, 2018, 8, (247), pp. 112.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 23. Najafi, M., Haratizadeh, H., Ghezellou, M.: ‘The effect of annealing, synthesis temperature and structure on photoluminescence properties of Eu-doped ZnO nanorods’, J. Nanostruct., 2015, 5, (2), pp. 129135.
    23. 23)
      • 24. Majumder, T., Mondal, S.P.: ‘Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications’, Bull. Mater. Sci., 2019, 42, (65), pp. 15.
    24. 24)
    25. 25)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2020.0251
Loading

Related content

content/journals/10.1049/mnl.2020.0251
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address