Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity
- Author(s): David L. Johnson 1 ; Yale Wang 2 ; Samuel T. Stealey 1, 3 ; Anne K. Alexander 1 ; Matey G. Kaltchev 1 ; Junhong Chen 2 ; Wujie Zhang 1
-
-
View affiliations
-
Affiliations:
1:
BioMolecular Engineering Program, Physics and Chemistry Department , Milwaukee School of Engineering , Milwaukee, WI 53202 , USA ;
2: Mechanical Engineering Department , University of Wisconsin-Milwaukee , Milwaukee, WI 53211 , USA ;
3: Biomedical Engineering Program , Parks College of Engineering, Aviation, and Technology, Saint Louis University , St. Louis, MO 63102 , USA
-
Affiliations:
1:
BioMolecular Engineering Program, Physics and Chemistry Department , Milwaukee School of Engineering , Milwaukee, WI 53202 , USA ;
- Source:
Volume 15, Issue 2,
05
February
2020,
p.
110 – 113
DOI: 10.1049/mnl.2019.0528 , Online ISSN 1750-0443
Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.
Inspec keywords: nanofabrication; microorganisms; nanoparticles; silver; visible spectra; ultraviolet spectra; nanomedicine; atomic force microscopy; antibacterial activity; scanning electron microscopy; biotechnology; light scattering
Other keywords: biosynthesis; UV–Vis absorption peak; wavelength 420.0 nm; Barbarea verna; Triton X-114; dynamic light scattering; atomic force microscopy; scanning electron microscopy; size 30.0 nm to 40.0 nm; silver nitrates; upland cress; UV–vis spectroscopy; antimicrobial activity; S. epidermis; Ag; E. coli bacteria; antimicrobial properties; silver nanoparticles; physical method; chemical method
Subjects: Biomedical materials; Visible and ultraviolet spectra of metals, semimetals, and alloys; Nanotechnology applications in biomedicine; Solid surface structure; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials
References
-
-
1)
-
23. Wu, S., Sun, D., Wang, C., et al: ‘Simultaneous extraction, enrichment and removal of dyes from aqueous solutions using a magnetic aqueous micellar two-phase system’, Appl. Sci., 2017, 7, (12), p. 1257 (doi: 10.3390/app7121257).
-
-
2)
-
18. Agerbirk, N., Olsen, C.E.: ‘Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea’, Phytochemistry, 2011, 72, (7), pp. 610–623 (doi: 10.1016/j.phytochem.2011.01.034).
-
-
3)
-
2. Song, J.Y., Kiml, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess. Biosyst. Eng., 2009, 32, pp. 79–84 (doi: 10.1007/s00449-008-0224-6).
-
-
4)
-
3. Khan, I., Saeed, K., Khan, I.: ‘Nanoparticles: properties, applications and toxicities’, Arab. J. Chem., 2017, 12, (7), pp. 908–931 (doi: 10.1016/j.arabjc.2017.05.011).
-
-
5)
-
7. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., et al: ‘Synthesis of silver nanoparticles: chemical, physical and biological methods’, Res. Pharm. Sci., 2014, 9, (6), pp. 385–406.
-
-
6)
-
8. Elhakim, H.K.A., Azab, S.M., Fekry, A.M.: ‘A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination’, Mater. Sci. Eng. C, Mater. Biol. Appl., 2018, 92, pp. 489–495 (doi: 10.1016/j.msec.2018.06.063).
-
-
7)
-
21. Hu, S., Musante, L., Tataruch, D., et al: ‘Purification and identification of membrane proteins from urinary extracellular vesicles using Triton X-114 phase partitioning’, J. Proteome Res., 2018, 17, (1), pp. 86–96 (doi: 10.1021/acs.jproteome.7b00386).
-
-
8)
-
36. Brewer, M.S.: ‘Natural antioxidants: sources, compounds, mechanisms of action, and potential applications’, Compr. Rev. Food Sci. Food Saf., 2011, 10, (4), pp. 221–247 (doi: 10.1111/j.1541-4337.2011.00156.x).
-
-
9)
-
12. Natsuki, J.: ‘A review of silver nanoparticles: synthesis methods, properties and applications’, Int. J. Mater. Sci. Appl., 2015, 4, (5), pp. 325–332.
-
-
10)
-
32. Shanmugam, N., Rajkamal, P., Cholan, S., et al: ‘Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens’, Appl. Nanosci., 2014, 4, (7), pp. 881–888 (doi: 10.1007/s13204-013-0271-4).
-
-
11)
-
41. Chatterjee, , T., , Chatterjee, , B.K., , Majumdar, , D., et al ‘Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified gompertz model’, Biochimica et Biophysica Acta (BBA) – General Subjects, 2015, 1850, (2), pp. 299–306. (doi: 10.1016/j.bbagen.2014.10.022).
-
-
12)
-
38. Taguchi, Y., Schätzl, H.M.: ‘Small-scale Triton X-114 extraction of hydrophobic proteins’, Bio. Protoc., 2014, 4, (11), p. e1139.
-
-
13)
-
31. Zhang, X.F., Liu, Z.G., Shen, W., et al: ‘Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches’, Int. J. Mol. Sci., 2016, 17, (9), p. 1534 (doi: 10.3390/ijms17091534).
-
-
14)
-
30. Nazar, M.F., Shah, S.S., Eastoe, J., et al: ‘Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures’, J. Colloid Interface Sci., 2011, 363, (2), pp. 490–496 (doi: 10.1016/j.jcis.2011.07.070).
-
-
15)
-
4. Raj, S., Jose, S., Sumod, U.S., et al: ‘Nanotechnology in cosmetics: opportunities and challenges’, J. Pharm. Bioallied Sci., 2012, 4, (3), pp. 186–193 (doi: 10.4103/0975-7406.99016).
-
-
16)
-
2. Jiang, S., Gnanasammandhan, M.K., Zhang, Y.: ‘Optical imaging-guided cancer therapy with fluorescent nanoparticles’, J. R. Soc., Interface, 2010, 7, (42), pp. 3–18 (doi: 10.1098/rsif.2009.0243).
-
-
17)
-
26. Supraja, N., Prasad, T.N.V.K.V., David, E., et al: ‘Antimicrobial kinetics of Alstonia scholaris bark extract-mediated AgNPs’, Appl. Nanosci., 2016, 6, (5), pp. 779–787 (doi: 10.1007/s13204-015-0483-x).
-
-
18)
-
28. Majumdar, R., Bag, B.G., Ghosh, P.: ‘Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity’, Appl. Nanosci., 2016, 6, (4), pp. 521–528 (doi: 10.1007/s13204-015-0454-2).
-
-
19)
-
35. Gill, C.I., Haldar, S., Boyd, L.A., et al: ‘Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults’, Am. J. Clin. Nutr., 2007, 85, (2), pp. 504–510 (doi: 10.1093/ajcn/85.2.504).
-
-
20)
-
33. Yugandhar, P., Savithramma, N.: ‘Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon’, Appl. Nanosci., 2016, 6, (2), pp. 223–233 (doi: 10.1007/s13204-015-0428-4).
-
-
21)
-
37. Liu, J.-f., Liu, R., Yin, Y.-g., et al: ‘Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase’, Chem. Commun., 2009, 28, (12), pp. 1514–1516 (doi: 10.1039/b821124h).
-
-
22)
-
29. Maduabuchi, E.K., Noundou, X.S., Ejike, U.S., et al: ‘Biosynthesis, characterization and antimicrobial activity of silver nanoparticles using cell free lysate of Bacilus subtilis: a biotechnology approach’, Am. J. Nanosci. Nanotechnol. Res., 2018, 6, (1), pp. 18–27.
-
-
23)
-
30. Li, S., Shen, Y., Xie, A., et al: ‘Green synthesis of silver nanoparticles using Capsicum annuum L. Extract’, Green Chem., 2007, 9, (8), pp. 852–858 (doi: 10.1039/b615357g).
-
-
24)
-
11. Swain, A.K.: ‘Review on green synthesis of silver nanoparticles by physical, chemical and biological methods’, Int. J. Sci. Eng. Res., 2016, 7, (10), pp. 551–554.
-
-
25)
-
18. Zhang, G., Du, M., Li, Q., et al: ‘Green synthesis of Au-Ag alloy nanoparticles using Cacumen platycladi extract’, RSC Adv., 2013, 3, (6), pp. 1878–1884 (doi: 10.1039/C2RA22442A).
-
-
26)
-
5. Rasheed, T., Bilal, M., Iqbal, H.M.N., et al: ‘Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications’, Colloids Surf. B, Biointerfaces, 2017, 158, pp. 408–415 (doi: 10.1016/j.colsurfb.2017.07.020).
-
-
27)
-
16. Awwad, A.M., Salem, N.M., Abdeen, A.O.: ‘Green synthesis of silver nanoparticles using Carob leaf extract and its antibacterial activity’, Int. J. Ind. Chem., 2013, 4, (1), pp. 1–6 (doi: 10.1186/2228-5547-4-29).
-
-
28)
-
6. Zhang, J., Tang, H., Liu, Z., et al: ‘Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy’, Int. J. Nanomed., 2017, 12, pp. 8483–8493 (doi: 10.2147/IJN.S148359).
-
-
29)
-
9. Moustafa, M.T.: ‘Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species’, Water Sci., 2017, 31, (2), pp. 164–176 (doi: 10.1016/j.wsj.2017.11.001).
-
-
30)
-
24. Chandrasekhar, N., Vinay, S.P.: ‘Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity’, Appl. Nanosci., 2017, 7, (8), pp. 851–861 (doi: 10.1007/s13204-017-0624-5).
-
-
31)
-
10. West, J.L., Halas, N.J.: ‘Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics’, Annu. Rev. Biomed. Eng., 2003, 5, (1), pp. 285–292 (doi: 10.1146/annurev.bioeng.5.011303.120723).
-
-
32)
-
19. Pedras, M.S.C., Alavi, M., To, Q.H.: ‘Expanding the nasturlexin family: nasturlexins C and D and their sulfoxides are phytoalexins of the crucifers Barbarea vulgaris and B. verna’, Phytochemistry, 2015, 118, pp. 131–138 (doi: 10.1016/j.phytochem.2015.08.009).
-
-
33)
-
20. Xiao, Z., Rausch, S.R., Luo, Y., et al: ‘Microgreens of brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity’, LWT, 2019, 101, pp. 731–737 (doi: 10.1016/j.lwt.2018.10.076).
-
-
34)
-
25. Kannan, R.R.R., Arumugam, R., Ramya, D., et al: ‘Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum’, Appl. Nanosci., 2013, 3, (3), pp. 229–233 (doi: 10.1007/s13204-012-0125-5).
-
-
35)
-
4. Ahamed, M., Alsalhi, M.S., Siddiqui, M.K.: ‘Silver nanoparticle applications and human health’, Clin. Chim. Acta, 2010, 411, (23-24), pp. 1841–1848 (doi: 10.1016/j.cca.2010.08.016).
-
-
36)
-
27. Kirubha, E., Vishista, K., Palanisamy, P.K.: ‘Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy’, Appl. Nanosci., 2015, 5, (7), pp. 777–786 (doi: 10.1007/s13204-014-0376-4).
-
-
37)
-
34. Kokila, T., Ramesh, P.S., Geetha, D.: ‘Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach’, Appl. Nanosci., 2015, 5, (8), pp. 911–920 (doi: 10.1007/s13204-015-0401-2).
-
-
38)
-
15. Vilchis-Nestor, A.R., Sánchez-Mendieta, V., Camacho-López, M.A., et al: ‘Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract’, Mater. Lett., 2008, 62, (17–18), pp. 3103–3105 (doi: 10.1016/j.matlet.2008.01.138).
-
-
39)
-
13. Siddiqi, K.S., Husen, A., Rao, R.A.K.: ‘A review on biosynthesis of silver nanoparticles and their biocidal properties’, J. Nanobiotechnol., 2018, 16, (1), p. 14 (doi: 10.1186/s12951-018-0334-5).
-
-
40)
-
22. López-García, I., Vicente-Martínez, Y., Hernández-Córdoba, M.: ‘Cloud point extraction assisted by silver nanoparticles for the determination of traces of cadmium using electrothermal atomic absorption spectrometry’, J. Anal. At. Spectrom., 2015, 30, (2), pp. 375–380 (doi: 10.1039/C4JA00468J).
-
-
41)
-
40. Qing, , Y., , Cheng, , L., , Li, , R., et al: ‘Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies’, Int J Nanomedicine, 2018, 13, pp. 3311–3327 (doi: 10.2147/IJN.S165125).
-
-
1)

Related content
