Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Copper ferrite nanoparticles: an effective and recoverable nanomagnetic catalyst for the synthesis of N, N′,N″-trisubstituted guanidines from the addition reaction of anilines to carbodiimide

In this study, copper ferrite (CuFe2O4) nanoparticles were successfully prepared and employed as an efficient catalyst for the synthesis of guanidine derivatives through the addition of anilines to N, N-dicyclohexylcarcodiimide under solvent-free conditions. This magnetically retrievable catalyst was well characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy and field emission scanning electron microscope-energy dispersive X-ray techniques. The catalyst can be readily recovered from the reaction mixture by the use of an external magnet and reused several times without remarkable loss of its catalytic activity.

Inspec keywords: ferrites; nanomagnetics; catalysis; transmission electron microscopy; nanoparticles; copper compounds; association; catalysts; field emission scanning electron microscopy; nanofabrication; magnetic particles; X-ray diffraction; Fourier transform infrared spectra; organic compounds; X-ray chemical analysis

Other keywords: carbodiimide; field emission scanning electron microscopy-energy dispersive X-ray techniques; recoverable nanomagnetic catalyst; CuFe2O4; N,N′,N″-trisubstituted guanidines; N,N-dicyclohexylcarcodiimide; magnetically retrievable catalyst; Fourier transform infrared spectroscopy; effective nanomagnetic catalyst; anilines; copper ferrite nanoparticles; solvent-free conditions; guanidine derivatives; transmission electron microscopy; reaction mixture; X-ray powder diffraction; external magnet; addition reaction

Subjects: Magnetic properties of nanostructures; Infrared and Raman spectra in inorganic crystals; Fine-particle magnetic systems; Low-dimensional structures: growth, structure and nonelectronic properties; Amorphous and nanostructured magnetic materials; Electromagnetic radiation spectrometry (chemical analysis); Association, addition, and insertion; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Heterogeneous catalysis at surfaces and other surface reactions; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
    2. 2)
      • 35. Rani, B.J., Saravanakumar, B., Ravi, G., et al: ‘Structural, optical and magnetic properties of CuFe2O4 nanoparticles’, J. Mater. Sci.: Mater. Electron., 2018, 29, (3), pp. 19751984.
    3. 3)
    4. 4)
      • 2. Schmuck, C., Kuchelmeister, H.Y.: ‘Guanidinium based anion receptors’, in ‘Artificial receptors for chemical sensors’ (Wiley-VCH, Weinheim, Germany, 2010), pp. 273317.
    5. 5)
    6. 6)
      • 30. Shaw, J.W., Grayson, D.H., Rozas, I.: ‘Synthesis of guanidines and some of their biological applications’, In: ‘guanidines as reagents and catalysts I’ (Springer, Cham, 2015), pp. 151.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 36. Sharma, V.K.: ‘Ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation’ (American Chemical Society, Washington, USA, 2016).
    20. 20)
    21. 21)
    22. 22)
      • 27. Smith, G.V., Notheisz, F.: ‘Heterogeneous catalysis in organic chemistry’ (Academic Press, Cambridge, MA, USA, 1999).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 5. Ishikawa, T.: ‘Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts’ (John Wiley & Sons, London, UK, 2009).
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 11. Gers, T., Kunce, D., Markowski, P., et al: ‘Reagents for efficient conversion of amines to protected guanidines’, Synthesis, 2004, 2004, (1), pp. 3742.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 28. Zecchina, A., Bordiga, S., Groppo, E.: ‘Selective nanocatalysts and nanoscience: concepts for heterogeneous and homogeneous catalysis’ (Wiley-VCH, Weinheim, Germany, 2011).
    43. 43)
    44. 44)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2019.0519
Loading

Related content

content/journals/10.1049/mnl.2019.0519
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address