Copper ferrite nanoparticles: an effective and recoverable nanomagnetic catalyst for the synthesis of N, N′,N″-trisubstituted guanidines from the addition reaction of anilines to carbodiimide
- Author(s): Fatemeh Germaninezhad 1 ; Rahman Hosseinzadeh 1 ; Mahmood Tajbakhsh 1 ; Ali Beitollahi 2
-
-
View affiliations
-
Affiliations:
1:
Department of Organic Chemistry, Faculty of Chemistry , University of Mazandaran , Babolsar 47416-95447 , Iran ;
2: School of Metallurgy and Materials Engineering, Iran University of Science and Technology , Narmak , Tehran , Iran
-
Affiliations:
1:
Department of Organic Chemistry, Faculty of Chemistry , University of Mazandaran , Babolsar 47416-95447 , Iran ;
- Source:
Volume 15, Issue 6,
27
May
2020,
p.
359 – 364
DOI: 10.1049/mnl.2019.0519 , Online ISSN 1750-0443
In this study, copper ferrite (CuFe2O4) nanoparticles were successfully prepared and employed as an efficient catalyst for the synthesis of guanidine derivatives through the addition of anilines to N, N-dicyclohexylcarcodiimide under solvent-free conditions. This magnetically retrievable catalyst was well characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy and field emission scanning electron microscope-energy dispersive X-ray techniques. The catalyst can be readily recovered from the reaction mixture by the use of an external magnet and reused several times without remarkable loss of its catalytic activity.
Inspec keywords: ferrites; nanomagnetics; catalysis; transmission electron microscopy; nanoparticles; copper compounds; association; catalysts; field emission scanning electron microscopy; nanofabrication; magnetic particles; X-ray diffraction; Fourier transform infrared spectra; organic compounds; X-ray chemical analysis
Other keywords: carbodiimide; field emission scanning electron microscopy-energy dispersive X-ray techniques; recoverable nanomagnetic catalyst; CuFe2O4; N,N′,N″-trisubstituted guanidines; N,N-dicyclohexylcarcodiimide; magnetically retrievable catalyst; Fourier transform infrared spectroscopy; effective nanomagnetic catalyst; anilines; copper ferrite nanoparticles; solvent-free conditions; guanidine derivatives; transmission electron microscopy; reaction mixture; X-ray powder diffraction; external magnet; addition reaction
Subjects: Magnetic properties of nanostructures; Infrared and Raman spectra in inorganic crystals; Fine-particle magnetic systems; Low-dimensional structures: growth, structure and nonelectronic properties; Amorphous and nanostructured magnetic materials; Electromagnetic radiation spectrometry (chemical analysis); Association, addition, and insertion; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Heterogeneous catalysis at surfaces and other surface reactions; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials
References
-
-
1)
-
21. Xu, L., Zhang, W.X., Xi, Z.: ‘Mechanistic considerations of the catalytic guanylation reaction of amines with carbodiimides for guanidine synthesis’, Organometallics, 2015, 34, (10), pp. 1787–1801 (doi: 10.1021/acs.organomet.5b00251).
-
-
2)
-
35. Rani, B.J., Saravanakumar, B., Ravi, G., et al: ‘Structural, optical and magnetic properties of CuFe2O4 nanoparticles’, J. Mater. Sci.: Mater. Electron., 2018, 29, (3), pp. 1975–1984.
-
-
3)
-
4. Alegre-Requena, J.V., Marqués-López, E., Herrera, R.P.: ‘Guanidine motif in biologically active peptides’, Aust. J. Chem., 2014, 67, (7), pp. 965–971 (doi: 10.1071/CH14043).
-
-
4)
-
2. Schmuck, C., Kuchelmeister, H.Y.: ‘Guanidinium based anion receptors’, in ‘Artificial receptors for chemical sensors’ (Wiley-VCH, Weinheim, Germany, 2010), pp. 273–317.
-
-
5)
-
41. Sarode, S.A., Jadhav, V.G., Nagarkar, J.M.: ‘Synthesis of 2-aryl quinazolines from (2-aminophenyl) methanol and oxime ether catalyzed by copper ferrite nanoparticles’, Tetrahedron Lett., 2017, 58, (8), pp. 779–784 (doi: 10.1016/j.tetlet.2017.01.037).
-
-
6)
-
30. Shaw, J.W., Grayson, D.H., Rozas, I.: ‘Synthesis of guanidines and some of their biological applications’, In: ‘guanidines as reagents and catalysts I’ (Springer, Cham, 2015), pp. 1–51.
-
-
7)
-
10. Trifonov, A.A.: ‘Guanidinate and amidopyridinate rare-earth complexes: towards highly reactive alkyl and hydrido species’, Coord. Chem. Rev., 2010, 254, (11–12), pp. 1327–1347 (doi: 10.1016/j.ccr.2010.01.008).
-
-
8)
-
32. Kantam, M.L., Priyadarshini, S., Joseph, P.A., et al: ‘Catalytic guanylation of aliphatic, aromatic, heterocyclic primary and secondary amines using nanocrystalline zinc (II) oxide’, Tetrahedron, 2012, 68, (29), pp. 5730–5737 (doi: 10.1016/j.tet.2012.05.044).
-
-
9)
-
44. Lv, W.Z., Liu, B., Luo, Z.K., et al: ‘XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method’, J. Alloys Compd., 2008, 465, (1–2), pp. 261–264 (doi: 10.1016/j.jallcom.2007.10.049).
-
-
10)
-
18. Kukade, S.D., Singh, S.K., Tekade, P.V., et al: ‘Microwave assisted synthesis, characterization and thermoacoustical study of a β-naphthol-guanidine-formaldehyde copolymer resin’, New J. Chem., 2016, 40, (1), pp. 705–710 (doi: 10.1039/C5NJ02184G).
-
-
11)
-
1. Ishikawa, T., Kumamoto, T.: ‘Guanidines in organic synthesis’, Synthesis, 2006, 2006, (5), pp. 737–752 (doi: 10.1055/s-2006-926325).
-
-
12)
-
12. Costa, M.V., de Sequeira Aguiar, L.C., Malta, L.F. B., et al: ‘Simple and efficient methodology to prepare guanidines from 1,3-disubstituted thioureas’, Tetrahedron Lett., 2016, 57, (14), pp. 1585–1588 (doi: 10.1016/j.tetlet.2016.02.107).
-
-
13)
-
20. Đud, M., Glasovac, Z., Margetić, D.: ‘The utilization of ball milling in synthesis of aryl guanidines through guanidinylation and N-Boc-deprotection sequence’, Tetrahedron, 2019, 75, (1), pp. 109–115 (doi: 10.1016/j.tet.2018.11.038).
-
-
14)
-
15. Armitage, I., Fu, M., Hicks, F., et al: ‘The use of chloroformamidine hydrochloride as a reagent for the synthesis of guanidines from electron deficient aromatic amines’, J. Heterocycl. Chem., 2017, 54, (1), pp. 728–734 (doi: 10.1002/jhet.2567).
-
-
15)
-
40. Sarode, S.A., Bhojane, J.M., Nagarkar, J.M.: ‘An efficient magnetic copper ferrite nanoparticle catalyzed ligand and solvent free synthesis of N-aryl amide from aldoximes and iodobenzene’, RSC Adv., 2015, 5, (127), pp. 105353–105358 (doi: 10.1039/C5RA22777A).
-
-
16)
-
19. Štrukil, V.: ‘Mechanochemical synthesis of thioureas, ureas and guanidines’, Beilstein J. Org. Chem., 2017, 13, (1), pp. 1828–1849 (doi: 10.3762/bjoc.13.178).
-
-
17)
-
33. Grirrane, A., Garcia, H., Corma, A., et al: ‘Orthogonal C-N plus C-C tandem reaction of iodoanilines leading to styrylguanidines catalyzed by supported palladium nanoparticles’, Chem.: Eur. J., 2012, 18, (47), pp. 14934–14938 (doi: 10.1002/chem.201202823).
-
-
18)
-
6. Evindar, G., Batey, R.A.: ‘Copper-and palladium-catalyzed intramolecular aryl guanidinylation: an efficient method for the synthesis of 2-aminobenzimidazoles’, Org. Lett., 2003, 5, (2), pp. 133–136 (doi: 10.1021/ol027061h).
-
-
19)
-
36. Sharma, V.K.: ‘Ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation’ (American Chemical Society, Washington, USA, 2016).
-
-
20)
-
37. Kumar, A.S., Thulasiram, B., Laxmi, S.B., et al: ‘Magnetic CuFe2O4 nanoparticles: A retrievable catalyst for oxidative amidation of aldehydes with amine hydrochloride salts’, Tetrahedron, 2014, 70, (36), pp. 6059–6067 (doi: 10.1016/j.tet.2014.01.051).
-
-
21)
-
26. Harinath, A., Bano, K., Ahmed, S., et al: ‘2-Picolylamino (diphenylphosphinoselenoic) amide supported zinc complexes: efficient catalyst for insertion of N–H bond into carbodiimides, isocyanates, and isothiocyanate’, Phosphorus Sulfur Silicon Relat. Elem., 2018, 193, (1), pp. 23–32 (doi: 10.1080/10426507.2017.1370590).
-
-
22)
-
27. Smith, G.V., Notheisz, F.: ‘Heterogeneous catalysis in organic chemistry’ (Academic Press, Cambridge, MA, USA, 1999).
-
-
23)
-
39. Murthy, Y.L.N., Diwakar, B.S., Govindh, B., et al: ‘Nano copper ferrite: a reusable catalyst for the synthesis of β, γ-unsaturated ketones’, J. Chem. Sci., 2012, 124, (3), pp. 639–645 (doi: 10.1007/s12039-012-0258-9).
-
-
24)
-
43. Dandia, A., Jain, A.K., Sharma, S.: ‘Cufe2o4 nanoparticles as a highly efficient and magnetically recoverable catalyst for the synthesis of medicinally privileged spiropyrimidine scaffolds’, RSC Adv., 2013, 3, (9), pp. 2924–2934 (doi: 10.1039/c2ra22477a).
-
-
25)
-
7. Deng, X., McAllister, H., Mani, N.S.: ‘Cui-catalyzed amination of arylhalides with guanidines or amidines: A facile synthesis of 1-H-2-substituted benzimidazoles’, J. Org. Chem., 2009, 74, (15), pp. 5742–5745 (doi: 10.1021/jo900912h).
-
-
26)
-
31. Yavari, I., Sodagar, E., Nematpour, M., et al: ‘Nanoparticulate copper (II) oxide catalyzed synthesis of guanidine derivatives and their conversion into functionalized iminoguanidines’, Synlett, 2015, 26, (9), pp. 1230–1232 (doi: 10.1055/s-0034-1380349).
-
-
27)
-
22. Zhu, X., Du, Z., Xu, F., et al: ‘Ytterbium triflate: A highly active catalyst for addition of amines to carbodiimides to N,N′,N′′-trisubstituted guanidines’, J. Org. Chem., 2009, 74, (16), pp. 6347–6349 (doi: 10.1021/jo900903t).
-
-
28)
-
13. Larraufie, M.H., Ollivier, C., Fensterbank, L., et al: ‘Radical synthesis of guanidines from N-acyl cyanamides’, Ang. Chem. Int. Ed., 2010, 49, (12), pp. 2178–2181 (doi: 10.1002/anie.200907237).
-
-
29)
-
17. Chen, C.H., Tung, C.L., Sun, C.M.: ‘Microwave-assisted synthesis of highly functionalized guanidines on soluble polymer support’, Tetrahedron Lett., 2012, 53, (31), pp. 3959–3962 (doi: 10.1016/j.tetlet.2012.05.074).
-
-
30)
-
9. Coles, M.P.: ‘Application of neutral amidines and guanidines in coordination chemistry’, Dalton Trans., 2006, 8, pp. 985–1001 (doi: 10.1039/b515490a).
-
-
31)
-
16. Miller, A.E., Feeney, D.J., Ma, Y., et al: ‘The synthesis of aminoiminoethanenitriles, 5-aminotetrazoles, N-cyanoguanidines, and N-hydroxyguanidines from aminoiminomethanesulfonic acids’, Synth. Commun., 1990, 20, (2), pp. 217–226 (doi: 10.1080/00397919008052286).
-
-
32)
-
5. Ishikawa, T.: ‘Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts’ (John Wiley & Sons, London, UK, 2009).
-
-
33)
-
8. Zeng, F., Alper, H.: ‘Tandem palladium-catalyzed addition/cyclocarbonylation: an efficient synthesis of 2-heteroquinazolin-4 (3H)-ones’, Org. Lett., 2010, 12, (6), pp. 1188–1191 (doi: 10.1021/ol902924x).
-
-
34)
-
38. Baghbanian, S.M., Farhang, M.: ‘Cufe2o4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media’, RSC Adv., 2014, 4, (23), pp. 11624–11633 (doi: 10.1039/c3ra46119j).
-
-
35)
-
14. Zeng, C.J., Chen, C.J., Chang, C.W., et al: ‘Copper (i) iodide-catalyzed synthesis of N,N′-disubstituted guanidines from n-substituted cyanamides’, Aust. J. Chem., 2014, 67, (7), pp. 1134–1137 (doi: 10.1071/CH14197).
-
-
36)
-
11. Gers, T., Kunce, D., Markowski, P., et al: ‘Reagents for efficient conversion of amines to protected guanidines’, Synthesis, 2004, 2004, (1), pp. 37–42.
-
-
37)
-
23. Pottabathula, S., Royo, B.: ‘First iron-catalyzed guanylation of amines: a simple and highly efficient protocol to guanidines’, Tetrahedron Lett., 2012, 53, (38), pp. 5156–5158 (doi: 10.1016/j.tetlet.2012.07.065).
-
-
38)
-
25. Bhattacharjee, J., Sachdeva, M., Banerjee, I., et al: ‘Zinc catalyzed guanylation reaction of amines with carbodiimides/isocyanate leading to guanidines/urea derivatives formation’, J. Chem. Sci., 2016, 128, (6), pp. 875–881 (doi: 10.1007/s12039-016-1096-y).
-
-
39)
-
3. Berlinck, R.G., Trindade-Silva, A.E., Santos, M.F.: ‘The chemistry and biology of organic guanidine derivatives’, Nat. Prod. Rep., 2012, 29, (12), pp. 1382–1406 (doi: 10.1039/c2np20071f).
-
-
40)
-
24. Tsubokura, K., Iwata, T., Taichi, M., et al: ‘Direct guanylation of amino groups by cyanamide in water: catalytic generation and activation of unsubstituted carbodiimide by scandium (III) triflate’, Synlett, 2014, 25, (9), pp. 1302–1306 (doi: 10.1055/s-0033-1341080).
-
-
41)
-
34. Abbasi, S., Saberi, D., Heydari, A.: ‘Copper oxide supported on magnetic nanoparticles (CuO@ γ-Fe2O3): an efficient and magnetically separable nanocatalyst for addition of amines to carbodiimides towards synthesis of substituted guanidines’, Appl. Organomet. Chem., 2017, 31, (9), p. e3695 (doi: 10.1002/aoc.3695).
-
-
42)
-
28. Zecchina, A., Bordiga, S., Groppo, E.: ‘Selective nanocatalysts and nanoscience: concepts for heterogeneous and homogeneous catalysis’ (Wiley-VCH, Weinheim, Germany, 2011).
-
-
43)
-
29. Mannepalli, L.K., Dupati, V., Vallabha, S.J., et al: ‘Synthesis of substituted guanidines using Zn–Al hydrotalcite catalyst’, J. Chem. Sci., 2013, 125, (6), pp. 1339–1345 (doi: 10.1007/s12039-013-0501-z).
-
-
44)
-
42. Cunha, I.T., Teixeira, I.F., Albuquerque, A.S., et al: ‘Catalytic oxidation of aqueous sulfide in the presence of ferrites (MFe2O4, M=Fe, Cu, Co)’, Catal. Today, 2016, 259, pp. 222–227 (doi: 10.1016/j.cattod.2015.07.023).
-
-
1)

Related content
