Miniaturised preparation of polymeric nanoparticles using droplet manipulation on open surfaces
Miniaturised preparation of polymeric nanoparticles using droplet manipulation on open surfaces
- Author(s): Alsaeed M. Abualsayed 1 ; Sara A. Abouelmagd 2 ; Mohamed Abdelgawad 1, 3
- DOI: 10.1049/mnl.2019.0421
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): Alsaeed M. Abualsayed 1 ; Sara A. Abouelmagd 2 ; Mohamed Abdelgawad 1, 3
-
-
View affiliations
-
Affiliations:
1:
Department of Mechanical Engineering , Assiut University , Assiut 71516 , Egypt ;
2: Department of Pharmaceutics , Assiut University , Assiut 71526 , Egypt ;
3: Department of Mechanical Engineering , American University of Sharjah , Sharjah , United Arab Emirates
-
Affiliations:
1:
Department of Mechanical Engineering , Assiut University , Assiut 71516 , Egypt ;
- Source:
Volume 14, Issue 13,
20
November
2019,
p.
1312 – 1316
DOI: 10.1049/mnl.2019.0421 , Online ISSN 1750-0443
A digital microfluidics platform for the preparation of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) was developed. Droplets of PLGA in dimethylformamide were merged with droplets of deionised water by electrical actuation on a digital microfluidics device to form PLGA NPs through nanoprecipitation. The developed platform is automated and allows for the preparation of polymeric NPs with small size and high uniformity. Using the platform, the authors were able to prepare monodisperse PLGA NPs as small as 115 nm with a polydispersity index (PDI) of 0.14 which can be challenging with conventional preparation techniques on the macroscale. Size of the prepared NPs can be tuned through proper choice of the volume ratio between the two merged droplets which controls the induced internal convection flow after merging. Concentration of PLGA in the dimethylformamide droplet also had an effect on the size and polydispersity of the formed NPs. These results prove the potential use of digital microfluidics for testing combinatorial synthesis of different polymeric NPs for various applications. This approach allows robust and automated screening of NP preparations using only few microlitres of the reagents used, thus conserving precious and costly NP components and loaded therapeutic agents.
Inspec keywords: particle size; polymer blends; nanofabrication; drops; microfluidics; nanoparticles; biomedical materials; precipitation (physical chemistry); nanomedicine
Other keywords: digital microfluidics platform; induced internal convection flow; volume ratio; automated screening; poly(lactic-co-glycolic) acid nanoparticles; merged droplets; conventional preparation techniques; nanoprecipitation; miniaturised preparation; dimethylformamide droplet; electrical actuation; deionised water; droplet manipulation; polymeric nanoparticles; polydispersity index; monodisperse PLGA NPs; polymeric NPs; loaded therapeutic agents; open surfaces; digital microfluidics device
Subjects: Structure of polymers, elastomers, and plastics; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Preparation of polymers and plastics; Low-dimensional structures: growth, structure and nonelectronic properties; Biomedical materials; Nanotechnology applications in biomedicine
References
-
-
1)
-
1. Brown, P.D., Patel, P.R.: ‘Nanomedicine: a pharma perspective’, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 2015, 7, (2), pp. 125–130 (doi: 10.1002/wnan.1288).
-
-
2)
-
2. Kargozar, S., Mozafari, M.: ‘Nanotechnology and nanomedicine: start small, think big’, Mater. Today: Proc., 2018, 5, (7, Part 3), pp. 15492–15500.
-
-
3)
-
3. Youn, Y.S., Bae, Y.H.: ‘Perspectives on the past, present, and future of cancer nanomedicine’, Adv. Drug Deliv. Rev., 2018, 130, pp. 3–11 (doi: 10.1016/j.addr.2018.05.008).
-
-
4)
-
4. Valencia, P.M., Farokhzad, O.C., Karnik, R., et al: ‘Microfluidic technologies for accelerating the clinical translation of nanoparticles’, Nature Nano., 2012, 7, (10), pp. 623–629 (doi: 10.1038/nnano.2012.168).
-
-
5)
-
5. Kamaly, N., Xiao, Z., Valencia, P.M., et al: ‘Targeted polymeric therapeutic nanoparticles: design, development and clinical translation’, Chem. Soc. Rev., 2012, 41, (7), pp. 2971–3010 (doi: 10.1039/c2cs15344k).
-
-
6)
-
6. Martín-Banderas, L., Flores-Masquera, M., Riesco-Chueca, P., et al: ‘Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles’, Small, 2005, 1, (7), pp. 688–692 (doi: 10.1002/smll.200500087).
-
-
7)
-
7. Park, J.I., Saffari, A., Kumar, S., et al: ‘Microfluidic synthesis of polymer and inorganic particulate materials’, Annu. Rev. Mater. Res., 2010, 40, (1), pp. 415–443 (doi: 10.1146/annurev-matsci-070909-104514).
-
-
8)
-
8. Feng, Q., Zhang, L., Liu, C., et al: ‘Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters’, Biomicrofluidics, 2015, 9, (5), p. 052604 (doi: 10.1063/1.4922957).
-
-
9)
-
9. Crabtree, H.J., Cheong, E.C.S., Tilroe, D.A, et al: ‘Microchip injection and separation anomalies due to pressure effects’, Anal. Chem., 2001, 73, (17), pp. 4079–4086 (doi: 10.1021/ac010217r).
-
-
10)
-
10. Berthier, E., Beebe, D.J.: ‘Flow rate analysis of a surface tension driven passive micropump’, Lab. Chip., 2007, 7, (11), pp. 1475–1478 (doi: 10.1039/b707637a).
-
-
11)
-
11. Kalantarifard, A., Alizadeh Haghighi, E., Elbuken, C.: ‘Damping hydrodynamic fluctuations in microfluidic systems’, Chem. Eng. Sci., 2018, 178, pp. 238–247 (doi: 10.1016/j.ces.2017.12.045).
-
-
12)
-
12. Thorsen, T., Maerkl, S.J., Quake, S.R.: ‘Microfluidic large-scale integration’, Science, 2002, 298, (5593), pp. 580–584 (doi: 10.1126/science.1076996).
-
-
13)
-
7. Unger, M.A., Chou, H.P., Thorsen, T., et al: ‘Monolithic microfabricated valves and pumps by multilayer soft lithography’, Science, 2000, 288, pp. 113–116 (doi: 10.1126/science.288.5463.113).
-
-
14)
-
14. Ong, K.J., MacCormack, T.J., Clark, R.J., et al: ‘Widespread nanoparticle-assay interference: implications for nanotoxicity testing’, PLOS ONE, 2014, 9, (3), p. e90650 (doi: 10.1371/journal.pone.0090650).
-
-
15)
-
15. Valencia, P.M., Pridgen, E.M., Rhee, M., et al: ‘Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy’, ACS Nano, 2013, 7, (12), pp. 10671–10680 (doi: 10.1021/nn403370e).
-
-
16)
-
16. Knauer, A., Schneider, S., Möller, F., et al: ‘Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences’, Chem. Eng. J., 2013, 227, pp. 80–89 (doi: 10.1016/j.cej.2012.10.008).
-
-
17)
-
17. Choi, K., Ng, A.H.C., Fobel, R.: ‘Wheeler AR. Digital microfluidics’, Annu. Rev. Anal. Chem., 2012, 5, (1), pp. 413–440 (doi: 10.1146/annurev-anchem-062011-143028).
-
-
18)
-
18. Luk, V.N., Wheeler, A.R.: ‘A digital microfluidic approach to proteomic sample processing’, Anal. Chem., 2009, 81, (11), pp. 4524–4530 (doi: 10.1021/ac900522a).
-
-
19)
-
19. Jebrail, M.J., Ng, A.H.C., Rai, V., et al: ‘Synchronized synthesis of peptide-based macrocycles by digital microfluidics’, Angew. Chemie Int. Ed., 2010, 49, (46), pp. 8625–8629 (doi: 10.1002/anie.201001604).
-
-
20)
-
20. Ng, A.H.C., Choi, K., Luoma, R.P., et al: ‘Digital microfluidic magnetic separation for particle-based immunoassays’, Anal. Chem., 2012, 84, (20), pp. 8805–8812 (doi: 10.1021/ac3020627).
-
-
21)
-
3. Fair, R.B., Khlystov, A., Tailor, T.D., et al: ‘Chemical and biological applications of digital-microfluidic devices’, IEEE Design Test Comput., 2007, 24, (1), pp. 10–24 (doi: 10.1109/MDT.2007.8).
-
-
22)
-
22. Chatterjee, D., Hetayothin, B., Wheeler, A.R., et al: ‘Droplet-based microfluidics with nonaqueous solvents and solutions’, Lab. Chip., 2006, 6, (2), pp. 199–206 (doi: 10.1039/b515566e).
-
-
23)
-
23. Styliari, I.D., Conte, C., Pearce, A.K., et al: ‘High-throughput miniaturized screening of nanoparticle formation via inkjet printing’, Macromol. Mater. Eng., 2018, 303, (8), p. 1800146 (doi: 10.1002/mame.201800146).
-
-
24)
-
11. Balu, B., Berry, A.D., Hess, D.W., et al: ‘Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications’, Lab Chip, 2009, 9, (21), pp. 3066–3075 (doi: 10.1039/b909868b).
-
-
25)
-
14. Yang, X., Song, J., Zheng, H., et al: ‘Anisotropic sliding on dual-rail hydrophilic tracks’, Lab Chip, 2017, 17, pp. 1041–1050 (doi: 10.1039/C7LC00028F).
-
-
26)
-
9. Tang, X., Zhu, P., Tian, Y., et al: ‘Mechano-regulated surface for manipulating liquid droplets’, Nat. Commun., 2017, 8, p. 14831 (doi: 10.1038/ncomms14831).
-
-
27)
-
27. Abualsayed, A., Abouelmagd, S.A., Abdelgawad, M.: ‘Nanoparticles synthesis using digital microfluidics’. The 14th Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Bangkok, Thailand, 11–14 April 2019, pp. 201–204.
-
-
28)
-
28. Abdelgawad, M., Watson, M.W.L., Wheeler, A.R.: ‘Hybrid microfluidics: A digital-to-channel interface for in-line sample processing and chemical separations’, Lab. Chip., 2009, 9, (8), pp. 1046–1051 (doi: 10.1039/b820682a).
-
-
29)
-
14. Abdelgawad, M., Park, P., Wheeler, A.R.: ‘Optimization of device geometry in single-plate digital microfluidics’, J. Appl. Phys., 2009, 105, (9), p. 094506 (doi: 10.1063/1.3117216).
-
-
30)
-
30. Paik, P.Y., Pamula, V.K., Chakrabarty, K.: ‘Adaptive cooling of integrated circuits using digital microfluidics’, IEEE Trans. VLSI Sys., 2008, 16, (4), pp. 432–443 (doi: 10.1109/TVLSI.2007.915434).
-
-
31)
-
31. Sah, E., Sah, H.: ‘Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent’, J. Nanomater., 2015, 2015, p. 794601 (doi: 10.1155/2015/794601).
-
-
32)
-
32. Karnik, R., Gu, F., Basto, P., et al: ‘Microfluidic platform for controlled synthesis of polymeric nanoparticles’, Nano Lett., 2008, 8, (9), pp. 2906–2912 (doi: 10.1021/nl801736q).
-
-
33)
-
33. Knight, J.B., Vishwanath, A., Brody, J.P., et al: ‘Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds’, Phys. Rev. Lett., 1998, 80, (17), pp. 3863–3866 (doi: 10.1103/PhysRevLett.80.3863).
-
-
34)
-
34. Lai, Y.-H., Hsu, M.-H., Yang, J.-T.: ‘Enhanced mixing of droplets during coalescence on a surface with a wettability gradient’, Lab. Chip., 2010, 10, (22), pp. 3149–3156 (doi: 10.1039/c003729j).
-
-
35)
-
35. Yeh, S.-.I, Sheen, H.-J., Yang, J.-T.: ‘Chemical reaction and mixing inside a coalesced droplet after a head-on collision’, Microfluid. Nanofluid., 2015, 18, (5), pp. 1355–1363 (doi: 10.1007/s10404-014-1534-4).
-
-
36)
-
36. Miladi, K., Sfar, S., Fessi, H., et al: ‘Nanoprecipitation Process: From Particle Preparation to In Vivo Applications’, in Vauthier, C., Ponchel, G. (Eds.): ‘Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development’ (Springer, Cham, 2016), pp. 17–53.
-
-
37)
-
37. Xia, X., He, C., Yu, D., et al: ‘Vortex-ring-induced internal mixing upon the coalescence of initially stationary droplets’, Phys. Rev. Fluids., 2017, 2, (11), p. 113607 (doi: 10.1103/PhysRevFluids.2.113607).
-
-
38)
-
38. Danaei, M., Dehghankhold, M., Ataei, S., et al: ‘Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems’, Pharmaceutics, 2018, 10, (2), p. 57 (doi: 10.3390/pharmaceutics10020057).
-
-
1)

Related content
