access icon free Understanding the electrical, thermal and mechanical properties of LDPE-clay nanocomposites

The performance of low-density polyethylene (LDPE) clay nanocomposites was analysed. The inclusion of nano montmorillonite (MMT) clay in LDPE material has significantly increased the contact angle, corona ageing resistance, water droplet initiated corona inception voltage and surface discharge inception voltage of the composites. The surface charge decay rate of the samples significantly reduced on the inclusion of clay indicating modified trap distribution characteristics due to the inclusion of the filler. Dynamical mechanical analysis indicates increased storage modulus and reduced tan (δ) due to nanofillers inclusion. Laser-induced breakdown spectroscopy indicates that on inclusion of nanofillers the plasma temperature increases and crater depth decreases. In particular, increased discharge resistance, improved thermomechanical properties are observed with LDPE–MMT clay composites compared to pure LDPE.

Inspec keywords: contact angle; plasma temperature; nanocomposites; filled polymers; drops; dielectric losses; polyethylene insulation; surface charging; nanomechanics; composite insulating materials; corona; elastic moduli; clay; partial discharges

Other keywords: LDPE–MMT clay composites; crater depth; corona ageing resistance; thermal properties; mechanical properties; LDPE-clay nanocomposites; storage modulus; low-density polyethylene clay nanocomposites; reduced tan (δ); contact angle; thermomechanical properties; water droplet initiated corona inception voltage; electrical properties; discharge resistance; laser-induced breakdown spectroscopy; LDPE material; plasma temperature; modified trap distribution characteristics; nanofiller inclusion; dynamical mechanical analysis; nanomontmorillonite clay; surface discharge inception voltage; surface charge decay rate

Subjects: Organic insulation; Elasticity, elastic constants; Fluid surface energy (surface tension, interface tension, angle of contact, etc.); Dielectric loss and relaxation; Electrical properties of composite materials (thin films, low-dimensional and nanoscale structures); Elasticity and anelasticity; Dielectric breakdown and space-charge effects; Dielectric breakdown and discharges; Composite materials (engineering materials science)

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 6. Kozako, M., Kuge, S.I., Imai, T., et al: ‘Surface erosion due to partial discharges on several kinds of epoxy nanocomposites’. Proc. of the Annual Report – Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP ’05), 2005, pp. 162165.
    6. 6)
      • 22. Ziari, Z., Mallem, H., Sahli, S.: ‘Influence of the temperature on the surface potential decay of polymer films charged negatively by corona discharge under light radiation’. Proc. of 2014 Mediterranean Microwave Symp. (MMS 2014), Marrakech, 2014, pp. 14.
    7. 7)
      • 3. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, USA, 2017).
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 25. Menczel, J.D., Prime, R.B.: ‘Thermal analysis of polymers: fundamentals and applications’ (Wiley, USA, 2009).
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 1. Dissado, L.A., Fothergill, J.C.: ‘Electrical degradation and breakdown in polymers’, in Stevens, G.C. (ED.): ‘IET materials and devices Series 9’, vol. 27 (Peter Peregrinus Ltd, London, UK, 1992), pp. 117143.
    20. 20)
      • 16. IEC publication, 60 112: ‘Recommended method for determining the comparative tracking index of solid insulating material under the moist condition’ (IEC, Geneva, Switzerland, 1972, 2nd edn.).
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5702
Loading

Related content

content/journals/10.1049/mnl.2018.5702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading