Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Preparation of amino silane magnetic nanocomposite by the sol–gel process and investigation of its antibacterial activity

The results of a comparative investigation on microstructure and magnetic characteristics of silane magnetic nanocomposites coated with silver nanoparticles (AgNPs) are presented. The authors used tetraethyl orthosilicate (TEOS) with (3-aminopropyl) triethoxysilane (APTES) to improve the antibacterial properties of AgNPs. On the basis of this approach, TEOS-APTES polymer was made by the sol–gel method. A layer of the polymer was set on the magnetic core of Fe3O4 NPs and then AgNPs were coated on the TEOS-APTES surface. Therefore, the core–shell structure of the Fe3O4/TEOS-APTES/Ag polymer nanocomposite was synthesised. To characterise the crystal morphology, structure, and size of nanocomposites, various techniques and experiments including Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, dynamic light scattering, and transmission electron microscope were used. Vibrating sample magnetometer showed the magnetic properties of the samples. Finally, antibacterial activity against Gram-negative and Gram-positive bacteria including Escherichia Coli ( American Type Culture Collection (ATCC) 35218), Salmonella typhimurium (ATCC 14028), Staphylococcus aureus (ATCC 292113) and Bacillus cereus (ATCC 14579) was showed by the disc diffusion analysis. The results indicated the uniform distribution of AgNPs on the polymer surface. Fe3O4/TEOS-APTES/Ag nanocomposite showed much better antibacterial activity in comparison with AgNPs only.

Inspec keywords: X-ray diffraction; nanocomposites; silver; antibacterial activity; visible spectra; nanomedicine; nanoparticles; scanning electron microscopy; light scattering; filled polymers; magnetic particles; nanofabrication; Fourier transform infrared spectra; sol-gel processing; crystal morphology; ultraviolet spectra; transmission electron microscopy; biomagnetism; coatings; nanomagnetics; field emission electron microscopy; microorganisms

Other keywords: Escherichia Coli; Salmonella typhimurium; magnetic properties; magnetic core; Staphylococcus aureus; antibacterial properties; sol-gel method; Gram-positive bacteria; (3-aminopropyl) triethoxysilane; X-ray diffraction; transmission electron microscopy; polymer nanocomposite; magnetic characteristics; Gram-negative bacteria; amino silane magnetic nanocomposites; Fourier transform infrared spectroscopy; TEOS-APTES surface; Bacillus cereus; Ag; antibacterial activity; Fe3O4; polymer surface; field-emission scanning electron microscopy; dynamic light scattering; TEOS-APTES polymer; silver nanoparticles; tetraethyl orthosilicate; amino silane magnetic nanocomposite

Subjects: Amorphous and nanostructured magnetic materials; Biomedical materials; Other heat and thermomechanical treatments; Other methods of nanofabrication; Optical diffraction and scattering; Magnetic properties of nanostructures; Solid surface structure; Deposition from liquid phases (melts and solutions); Nanotechnology applications in biomedicine; Fine-particle magnetic systems; Biomagnetism; Electromagnetic radiation spectrometry (chemical analysis); Microstructure; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Visible and ultraviolet spectra (condensed matter); Infrared and Raman spectra and scattering (condensed matter)

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 36. Pavia, D.L.: ‘Introduction to spectroscopy’ (Cengage Learning, 2012, 8th edn.).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 4. Edwards, J.V., Vigo, T.L.: ‘Bioactive fibers and polymers’ (Oxford University Press, Washington, 2001).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 35. Griffiths, P.R., Haseth, A.: ‘Fourier transform infrared spectrometry’ (Wiley-Interscience, Hoboken, NJ, USA, 2007).
    27. 27)
    28. 28)
      • 29. Mamani, J.B., Costa-Filho, A.J.D., Cornejo, R., et al: ‘Synthesis and characterization of magnetite nanoparticles coated with lauric acid’, Mater. Res., 2013, 81, pp. 2836.
    29. 29)
    30. 30)
    31. 31)
      • 43. Berne, B.J., Pecora, R.: ‘Dynamic light scattering: with applications to chemistry, biology, and physics’ (John Wiley & Sons, New York, 2000).
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 40. Nejati, K., Zabihi, K.: ‘Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method’, Chem. Cent., 2012, 6, pp. 2328.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 44. Smith, D.O.: ‘Development of a vibrating-coil magnetometer’, Chem. Phys., 1956, 27, pp. 261272.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5491
Loading

Related content

content/journals/10.1049/mnl.2018.5491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address