access icon free Numerical analysis of high-voltage RESURF AlGaN/GaN high-electron-mobility transistor with graded doping buffer and slant back electrode

A reduced surface field (RESURF) AlGaN/GaN high-electron-mobility transistor (HEMT) with graded doping buffer (GDB) and slant back electrode (SBE) is proposed. In the GDB, the p-dopant density increases linearly both from top to bottom and right to left. The concentrated negative space charges in the lower-left corner of GDB attract the electric field lines from the channel and barrier towards the gate under OFF-state, which flats the electric field and enhances the breakdown voltage (V br). Additionally, the low p-dopant density near the top of GDB achieves the device with low ON-state resistance (R ON). The SBE flats the electric field along the channel above it and introduces a peak electric field near its edge. Simulation results show a V br of 2150 V and R ON of 7.05 Ωmm for the proposed device, compared with 1701 V and 7.73 Ωmm for the conventional back electrode RESURF HEMT (BE-RESURF HEMT) with the same gate -drain spacing. Moreover, due to the reduced depletion of 2DEG from the GDB, the proposed device shows slight increases in f T and f max (8.76 and 14.80 GHz), comparing with the conventional BE-RESURF HEMT (8.24 and 13.84 GHz).

Inspec keywords: aluminium compounds; wide band gap semiconductors; semiconductor device models; high electron mobility transistors; semiconductor device breakdown; semiconductor doping; gallium compounds; two-dimensional electron gas; III-V semiconductors; space charge

Other keywords: voltage 1701.0 V; GDB; slant back electrode; back electrode RESURF HEMT; high-voltage RESURF AlGaN-GaN high-electron-mobility transistor; graded doping buffer; voltage 2150.0 V; electric field lines; reduced surface field AlGaN-GaN high-electron-mobility transistor; breakdown voltage; ON-state resistance; electric field distribution; SBE; concentrated negative space charges; conventional BE-RESURF HEMT; gate-drain spacing; AlGaN-GaN; peak electric field; 2DEG; frequency 8.76 GHz; frequency 8.24 GHz; low p-dopant density; p-dopant density; frequency 13.84 GHz; frequency 14.8 GHz

Subjects: Semiconductor doping; Semiconductor device modelling, equivalent circuits, design and testing; Other field effect devices

References

    1. 1)
    2. 2)
      • 17. Huang, W., Chow, T.P., Niiyama, Y., et al: ‘Lateral implanted RESURF GaN MOSFETs with BV up to 2.5 kV’. 2008 20th Int. Symp. on Power Semiconductor Devices and IC's, Orlando, FL, USA, May 18 2008, pp. 291294.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 15. Nakajima, A., Unni, V., Menon, K.G., et al: ‘GaN-based bidirectional super HFETs using polarization junction concept on insulator substrate’. 2012 24th Int. Symp. on Power Semiconductor Devices and ICs, Bruges, Belgium, Jun 3 2012, pp. 265268.
    22. 22)
    23. 23)
      • 22. Huang, W., Chow, T.P., Niiyama, Y., et al: ‘730 V, 34mω-cm2 lateral epilayer RESURF GaN MOSFET’. 2009 21st Int. Symp. on Power Semiconductor Devices & IC's, Barcelona, Spain, Jun 14 2009, pp. 2932.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5421
Loading

Related content

content/journals/10.1049/mnl.2018.5421
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading