access icon free Understanding the performance of gamma-ray-irradiated epoxy nanocomposites

Epoxy nanocomposites being used in the high-energy radiation zones as an insulant may undergo changes in their dielectric properties during service. In the present study, the performance of base epoxy resin (S1) is compared with epoxy resin with ion trapping particle (Sample S2) and epoxy resin with nanotitania (Sample S3) particle. The influence of gamma irradiation on nanocomposites was analysed. Corona inception voltage due to water droplet initiated discharge and contact angle reduces post-gamma-ray irradiation. Surface potential decay time constant reduced drastically for gamma-ray-irradiated specimens. Trap distribution characterisation indicated that charge mobility increases after irradiation. The surface roughness of the sample increases with the irradiation dosage. Dielectric relaxation spectroscopy shows that permittivity reduces and loss tangent increases with the gamma-irradiated specimens. Water diffusion rate increases for the gamma-ray-irradiated specimen. No change in elemental composition, measured using laser-induced breakdown spectroscopy, of test specimens was observed. The hardness of the material and plasma temperature formed during laser shine decreases with gamma-ray irradiation intensity for Sample S1, whereas samples S2 and S3 showed only marginal variation. The performance of Sample S2 is found to be better than Samples S1 and S3.

Inspec keywords: filled polymers; dielectric relaxation; drops; contact angle; surface potential; plasma temperature; permittivity; dielectric losses; gamma-ray effects; nanocomposites; resins; titanium compounds; surface roughness; hardness

Other keywords: gamma-irradiated specimens; dielectric relaxation spectroscopy; elemental composition; permittivity; ion trapping particle; surface potential decay time; TiO2; post-gamma-ray irradiation; contact angle; surface roughness; plasma temperature; gamma-ray-irradiated epoxy nanocomposites; gamma-ray irradiation intensity; trap distribution characterisation; irradiation dosage; base epoxy resin; high-energy radiation zones; nanotitania particle; water droplet initiated discharge; hardness; charge mobility; dielectric properties; water diffusion rate; laser-induced breakdown spectroscopy

Subjects: Dielectric permittivity; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Fatigue, embrittlement, and fracture; Solid surface structure; Electrical properties of thin films, low-dimensional and nanoscale structures; Fluid surface energy (surface tension, interface tension, angle of contact, etc.); Gamma ray effects; Dielectric loss and relaxation; Fatigue, brittleness, fracture, and cracks

References

    1. 1)
      • 12. Murray, K.A., Kennedy, J.E., McEvoy, B., et al: ‘Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers’, J. Mech. Behav. Biomed. Mater., 2012, 81, pp. 252268.
    2. 2)
      • 18. Gao, Y., Du, B.X., Ma, Z.L., et al: ‘Decay behavior of surface charge on gamma-ray irradiated epoxy resin’. Proc. IEEE Int. Conf. Solid Dielectrics (ICSD), Potsdam, Germany, 2010, pp. 14.
    3. 3)
    4. 4)
      • 6. Nelson, J.K., Hu, Y., Thiticharoenpong, J.: ‘Electrical properties of TiO2 nanocomposites’. IEEE Conf. Electrical Insulation Dielectric Phenomena (CEIDP), Albuquerque, NM, USA, 2003, pp. 719722.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 24. Crank, J.: ‘Mathematics of diffusion’ (Oxford Science Publications, New York, NY, 1975, 2nd edn.).
    10. 10)
      • 23. Johnscher, A.K.: ‘Dielectric relaxation in solids’ (Chelsea Dielectrics Press, London, UK, 1983).
    11. 11)
      • 4. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 373385.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 22. Gorur, G.R.: ‘Dielectrics in electric fields’ (CRC Press Taylor and Francis Group, Boca Raton, FL, 2016), pp. 137141.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 17. Imai, T., Sawa, F., Ozaki, T., et al: ‘Evaluation of insulation properties of epoxy resin with nano-scale silica particles’. Proc. Int. Symp. on Electrical Insulating Materials (ISEIM), Kitakyushu, Japan, 2005, No. A4-5, pp. 239242.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5402
Loading

Related content

content/journals/10.1049/mnl.2018.5402
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading