access icon free Refluxing synthesis of Mn-doped ZnO nanoparticles and their applications in dielectric ceramics

Pure and manganese (Mn)-doped zinc oxide (ZnO) (0, 1, 2 and 4 wt%) nanoparticles are synthesised by refluxing method. The as-synthesised nanoparticles are characterised by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDS). The results show that pure and Mn-doped ZnO nanoparticles have a hexagonal wurtzite structure and the (101) diffraction peaks position of Mn-doped ZnO shift toward the smaller value of diffraction angle compared with pure ZnO powders, confirming that the Mn2+ were well incorporated into ZnO crystal lattice. Moreover, Mn doping also restrained the growth of particles and the size decreased from 14.9244 to 13.1196 nm with the increase in doping concentration from 0 to 4 wt%. The EDS analysis for 2 wt% Mn-doped ZnO confirms the presence of Mn in ZnO nanocrystal. The dielectric measurements show that Mn-doped ZnO ceramics exhibit higher dielectric constant, while dielectric constant and dielectric loss increased continuously with the temperature increased. In addition, 2 wt% Mn-doped ZnO ceramics showed the high dielectric constant (23 × 103) and low dielectric loss (0.95) at 125°C after sintering at 1000°C for 2 h.

Inspec keywords: semiconductor doping; Fourier transform infrared spectra; sintering; zinc compounds; wide band gap semiconductors; II-VI semiconductors; manganese; powders; scanning electron microscopy; permittivity; dielectric losses; X-ray diffraction; X-ray chemical analysis; transmission electron microscopy; nanoparticles; ceramics; semiconductor growth; nanofabrication

Other keywords: pure ZnO nanoparticles; dielectric constant; temperature 125.0 degC; EDS; doping concentration; dielectric loss; Mn doping; ZnO:Mn; ZnO nanocrystal; Fourier transform infrared spectroscopy; temperature 1000.0 degC; (101) diffraction peaks position; pure ZnO powders; time 2.0 hour; energy-dispersive X-ray spectroscopy; transmission electron microscopy; ZnO crystal lattice; manganese -doped zinc oxide nanoparticles; Mn-doped ZnO nanoparticles; X-ray powder diffraction; Mn-doped ZnO ceramics

Subjects: Nanometre-scale semiconductor fabrication technology; Infrared and Raman spectra in inorganic crystals; Microstructure; Semiconductor doping; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Impurity concentration, distribution, and gradients; Dielectric loss and relaxation; Powder techniques, compaction and sintering; Dielectric permittivity; Other methods of nanofabrication; Preparation of ceramics and refractories; II-VI and III-V semiconductors; Doping and implantation of impurities; Electromagnetic radiation spectrometry (chemical analysis)

References

    1. 1)
    2. 2)
    3. 3)
      • 31. Zhao, Y., Chen, Y., Zhang, X.C., et al: ‘Ultrafast all-optical switch using carbon nanotube polymer composites’, US, 2002, A1[P], US 20020176650.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 15. Shaw, T.M., Troliermckinstry, S., Mcintyre, P.C.: ‘The properties of ferroelectric films at small dimensions’, Annu. Rev. Mater. Res., 2000, 30, (1), pp. 263298.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5397
Loading

Related content

content/journals/10.1049/mnl.2018.5397
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading