http://iet.metastore.ingenta.com
1887

Refluxing synthesis of Mn-doped ZnO nanoparticles and their applications in dielectric ceramics

Refluxing synthesis of Mn-doped ZnO nanoparticles and their applications in dielectric ceramics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Pure and manganese (Mn)-doped zinc oxide (ZnO) (0, 1, 2 and 4 wt%) nanoparticles are synthesised by refluxing method. The as-synthesised nanoparticles are characterised by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDS). The results show that pure and Mn-doped ZnO nanoparticles have a hexagonal wurtzite structure and the (101) diffraction peaks position of Mn-doped ZnO shift toward the smaller value of diffraction angle compared with pure ZnO powders, confirming that the Mn2+ were well incorporated into ZnO crystal lattice. Moreover, Mn doping also restrained the growth of particles and the size decreased from 14.9244 to 13.1196 nm with the increase in doping concentration from 0 to 4 wt%. The EDS analysis for 2 wt% Mn-doped ZnO confirms the presence of Mn in ZnO nanocrystal. The dielectric measurements show that Mn-doped ZnO ceramics exhibit higher dielectric constant, while dielectric constant and dielectric loss increased continuously with the temperature increased. In addition, 2 wt% Mn-doped ZnO ceramics showed the high dielectric constant (23 × 103) and low dielectric loss (0.95) at 125°C after sintering at 1000°C for 2 h.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 15. Shaw, T.M., Troliermckinstry, S., Mcintyre, P.C.: ‘The properties of ferroelectric films at small dimensions’, Annu. Rev. Mater. Res., 2000, 30, (1), pp. 263298.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Zhao, Y., Chen, Y., Zhang, X.C., et al: ‘Ultrafast all-optical switch using carbon nanotube polymer composites’, US, 2002, A1[P], US 20020176650.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5397
Loading

Related content

content/journals/10.1049/mnl.2018.5397
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address