access icon free Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices

Nanopore biosensors have attracted attention due to their label-free single molecule detection capability. To date, different materials and applications have been shown in the field, varying from Si3N4 to graphene and biomolecule sensing to DNA sequencing. Classical nanopore devices are composed of Si3N4 material supported on a Si wafer and the detection is largely based on electrochemical sensing using chambers of ml volumes on both sides of the nanopore device. In this study, in-flow label-free electrochemical detection of DNA molecules at single molecule level is shown using a classical Si3N4 nanopore device integrated into a microfluidic device. The layout of the device given here set the basics for future works and discussions regarding future microfluidic integrated solid-state nanopores and the behaviour of the molecule under the influence of hydrodynamic flow.

Inspec keywords: electrochemical sensors; silicon compounds; flow sensors; microsensors; microfluidics; nanoporous materials; nanosensors; biological techniques; flow measurement; DNA; biosensors; elemental semiconductors; silicon

Other keywords: biomolecule sensing; graphene; label-free single molecule detection capability; hydrodynamic flow; planar solid-state nanopore integrated microfluidic devices; DNA molecule sequencing; solid-state nanopore biosensors; Si3N4-Si; in-flow label-free electrochemical detection; in-flow label-free single molecule sensors; electrochemical sensing

Subjects: Molecular biophysics; Chemical sensors; Level, flow and volume measurement; Microsensors and nanosensors; Electrochemical analytical methods; Biosensors; Biological engineering and techniques; Biosensors; MEMS and NEMS device technology; Measurement instrumentation and techniques for fluid dynamics; Chemical variables measurement; Microfluidics and nanofluidics; Chemical sensors; Micromechanical and nanomechanical devices and systems

References

    1. 1)
    2. 2)
      • 34. Stone, H.A.: ‘Introduction to fluid dynamics for microfluidic flows’, in Lee, H., Westervelt, R.M., Ham, D. (Eds.): ‘CMOS biotechnology’ (Springer, USA, 2007), pp. 530.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 16. Rudenko, M.I., Yin, D., Holmes, M., et al: ‘Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides’, Proc. SPIE 6444, Ultrasensitive and Single-Molecule Detection Technologies II, San Jose, CA, 2007, p. 64440L.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 23. de Jong, J.: ‘Application of membrane technology in microfluidic devices’, University of Twente, 2008.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 6. Avci, H., Dogan Guzel, F., Erol, S., et al: ‘Recent advances in organ-on-a-chip technologies and future challenges: a review’, Turkish J. Chem., 2018, 42, (3), pp. 587610.
    32. 32)
      • 12. Guzel, F.D., Avci, H.: ‘Fabrication of nanopores in an ultra-thin polyimide membrane for biomolecule sensing’, IEEE Sens. J., 2018, PP, (99), p. 1.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5206
Loading

Related content

content/journals/10.1049/mnl.2018.5206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading