http://iet.metastore.ingenta.com
1887

Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices

Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanopore biosensors have attracted attention due to their label-free single molecule detection capability. To date, different materials and applications have been shown in the field, varying from Si3N4 to graphene and biomolecule sensing to DNA sequencing. Classical nanopore devices are composed of Si3N4 material supported on a Si wafer and the detection is largely based on electrochemical sensing using chambers of ml volumes on both sides of the nanopore device. In this study, in-flow label-free electrochemical detection of DNA molecules at single molecule level is shown using a classical Si3N4 nanopore device integrated into a microfluidic device. The layout of the device given here set the basics for future works and discussions regarding future microfluidic integrated solid-state nanopores and the behaviour of the molecule under the influence of hydrodynamic flow.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Avci, H., Dogan Guzel, F., Erol, S., et al: ‘Recent advances in organ-on-a-chip technologies and future challenges: a review’, Turkish J. Chem., 2018, 42, (3), pp. 587610.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 12. Guzel, F.D., Avci, H.: ‘Fabrication of nanopores in an ultra-thin polyimide membrane for biomolecule sensing’, IEEE Sens. J., 2018, PP, (99), p. 1.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 16. Rudenko, M.I., Yin, D., Holmes, M., et al: ‘Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides’, Proc. SPIE 6444, Ultrasensitive and Single-Molecule Detection Technologies II, San Jose, CA, 2007, p. 64440L.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 23. de Jong, J.: ‘Application of membrane technology in microfluidic devices’, University of Twente, 2008.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 34. Stone, H.A.: ‘Introduction to fluid dynamics for microfluidic flows’, in Lee, H., Westervelt, R.M., Ham, D. (Eds.): ‘CMOS biotechnology’ (Springer, USA, 2007), pp. 530.
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5206
Loading

Related content

content/journals/10.1049/mnl.2018.5206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address