access icon free Polyacrylamide modification of halloysite nanotubes surface by inverse emulsion polymerisation and their application in reinforcing PTFE

This work exploited the abundant hydroxyl group of halloysite nanotubes (HNTs) to induce acrylamide-polymerisation modification by inverse emulsion (water-in-oil), resulting in polyacrylamide (PAM)-modified HNTs. The structure and dispersion properties of the modified HNTs were analysed by a series of characterisations. As a promising application of HNTs, polytetrafluoroethylene (PTFE) reinforced with HNTs-PAM was prepared. The mechanical and tribological properties of the HNTs-PAM/PTFE were intensively studied. The results show that the volume wear rate of the HNTs-PAM/PTFE reduced 97.3% relative to PTFE. The wear resistance of HNTs in filling PTFE was desirable.

Inspec keywords: aluminium compounds; nanofabrication; wear resistance; nanocomposites; surface treatment; nanotubes; polymerisation; emulsions; filled polymers; nanomechanics

Other keywords: polytetrafluoroethylene; structural properties; volume wear rate; dispersion properties; mechanical properties; tribological properties; wear resistance; acrylamide-polymerisation modification; inverse emulsion polymerisation; polyacrylamide modification; modified HNTs; reinforcing PTFE; Al2(OH)4Si2O5H2O; abundant hydroxyl group; HNTs-PAM-PTFE; halloysite nanotube surface

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Preparation of reinforced polymers and polymer-based composites; Friction, lubrication, and wear; Other methods of nanofabrication; Polymer reactions and polymerization; Tribology; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Corrosion, oxidation, etching, and other surface treatments

References

    1. 1)
      • 13. Dong, Y., Marshall, J., Haroosh, H.J., et al: ‘Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification’, Compos. A, Appl. Sci. Manuf., 2015, 76, pp. 2836. Available at https://doi.org/10.1016/j.compositesa.2015.05.011.
    2. 2)
      • 3. Lvov, Y., Abdullayev, E.: ‘Functional polymer-clay nanotube composites with sustained release of chemical agents’, Prog. Polym. Sci., 2013, 38, (10–11), pp. 16901719. Available at https://doi.org/10.1016/j.progpolymsci.2013.05.009.
    3. 3)
      • 11. Cheng, Z.L., Chang, X.Y., Liu, Z., et al: ‘Halloysite nanotubes-reinforced PTFE nanocomposites with high performance’, Clay Miner., 2017, 52, (4), pp. 427438. Available at https://doi.org/10.1180/claymin.2017.052.4.02.
    4. 4)
      • 14. Wang, Y.X., Yan, F.Y.: ‘Tribological properties of transfer films of PTFE-based composites’, Wear, 2006, 261, pp. 13591366. Available at https://doi.org/10.1016/j.wear.2006.03.050.
    5. 5)
    6. 6)
      • 6. Du, M., Guo, B., Jia, D.: ‘Thermal stability and flame retardant effects of halloysite nanotubesonpoly(propylene)’, Eur. Polym. J., 2006, 42, (6), pp. 13621369. Available at https://doi.org/10.1016/j.eurpolymj.2005.12.006.
    7. 7)
      • 18. Pandey, G., Thostenson, E.T.: ‘Carbon nanotube-based multifunctional polymer nanocomposites’, Polym. Rev., 2012, 52, (3), pp. 355416. Available at https://doi.org/10.1080/15583724.2012.703747.
    8. 8)
      • 17. Moniruzzaman, M., Winey, K.I.: ‘Polymer nanocomposites containing carbon nanotubes’, Macromolecules, 2006, 39, (16), pp. 51945205. Available at https://pubs.acs.org/doi/abs/10.1021/ma060733p.
    9. 9)
      • 12. Cheng, Z.L., Chang, X.Y., Ma, L., et al: ‘Study on mechanical performance and wear resistance of halloysite nanotubes/PTFE nanocomposites prepared by employing solution mixing method’, China Pet. Process. Petrochem., 2018, 20, (1), pp. 101109. Available at http://www.chinarefining.com/EN/Y2018/V20/I1/101.
    10. 10)
      • 5. Liu, M., Guo, B., Lei, Y., et al: ‘Benzonthiazole sulfide compatibilized polypropylene/hallosite nanotubes composites’, Appl. Surf. Sci., 2009, 255, (9), pp. 49614969. Available at https://doi.org/10.1016/j.apsusc.2008.12.044.
    11. 11)
      • 1. Du, M., Guo, B., Jia, D.: ‘Newly emerging applications of halloysite nanotubes: a review’, Polym. Int., 2010, 59, (5), pp. 574582. Available at https://doi.org/10.1002/pi.2754.
    12. 12)
      • 8. Burris, D.L., Zhao, S., Duncan, R., et al: ‘A route to wear resistant PTFE via trace loadings of functionalized nanofillers’, Wear, 2009, 267, pp. 653660. Available at https://doi.org/10.1016/j.wear.2008.12.116).
    13. 13)
      • 10. Yuan, Y., Lin, H.D., Yu, D.L., et al: ‘Effects of perfluorooctyltriethoxysilane coupling agent on the properties of silica filled PTFE composites’, J. Mater. Sci., Mater. Electron., 2017, 28, (12), pp. 18. Available at https://link.springer.com/article/10.1007/s10854-017-6608-0.
    14. 14)
      • 7. Liu, M.X., Zhang, Y., Zhou, C.R.: ‘Nanocomposites of halloysite and polylactide’, Appl. Clay. Sci., 2013, 75–76, pp. 5257. Available at https://doi.org/10.1016/j.clay.2013.02.019.
    15. 15)
      • 9. Cheng, H.Z., Cheng, X.H.: ‘Influence of rare-earth-functionalized carbon nanotubes on thermal and mechanical properties of polytetrafluoroethylene nanocomposites’, J. Reinf. Plast. Compos., 2014, 33, (1), pp. 4757. Available at https://doi.org/10.1177/0731684413498295.
    16. 16)
      • 4. Deng, C.Y., Huang, H.X.: ‘Preparation and properties of polypropylene nanocomposites filled with high content of halloysite nanotubes’, CIESC J., 2013, 64, (10), pp. 38243830. Available at http://kns.cnki.net/KXReader/Detail?dbcode=CJFD&filename=HGSZ201310051&uid=WEEvREcwSlJHSldRa1Fhb09jSnZqckwwL0t6YVdFQXJFOEJOQTROYXJaTT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!.
    17. 17)
      • 15. Liu, M.X., Jia, Z.X., Jia, D.M., et al: ‘Recent advance in research on halloysite nanotubes-polymer nanocomposite’, Prog. Polym. Sci., 2014, 39, (8), pp. 14981525. Available at https://doi.org/10.1016/j.progpolymsci.2014.04.004.
    18. 18)
      • 16. Byrne, M.T., Gun'ko, Y.K.: ‘Recent advances in research on carbon nanotube-polymer composites’, Adv. Mater., 2010, 22, (15), pp. 16721688. Available at https://doi.org/10.1002/adma.200901545.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5195
Loading

Related content

content/journals/10.1049/mnl.2018.5195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading