access icon free Low-cost microfluidics: materials and methods

Microfluidics has been widely used in the biological, chemical and recently in the energy field. In the past decade, microfluidics has experienced tremendous growth in academia; researchers in various fields have been using microfluidics as a powerful tool for the enchantments of their research. However, the fabrication technologies of microfluidics are sourced from microelectromechanical systems and integrated circuit industry, which the fabrication process is costly and time-consuming, with the need of highly sophisticated instruments and experienced technical personnel to conduct fabrication process in the cleanroom environment. To lower the technical barriers for microfluidics, more and more researchers in different fields have invented various low-cost fabrication methods for microfluidics using polymers or paper materials. Comparing to the conventional microfabrication process conducted in the cleanroom, the low-cost fabrication methods are more flexible, with significant reduction in material cost, fabrication cost and processing time. This review is trying to introduce the most recent developments in low-cost microfluidics, from the aspects of materials, microfabrication and bonding technologies. The comparison and scope of application for different low-cost fabrication technologies for microfluidics were also provided in this review.

Inspec keywords: polymers; microfluidics; microfabrication; clean rooms

Other keywords: low-cost microfluidics; energy field; cleanroom environment; paper materials; microelectromechanical systems; low-cost fabrication methods; material cost reduction; integrated circuit industry; material cost; microfabrication process; bonding technologies; fabrication cost; polymers; low-cost fabrication technologies

Subjects: Fabrication of MEMS and NEMS devices

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 92. Wei, H.W., Li, Z., Hu, J., et al: ‘Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping’, J. Micromech. Microeng., 2015, 25, 105015, pp. 18, doi: 10.1088/0960-1317/25/10/105015.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 52. Fan, Y., Liu, S., Gao, K., et al: ‘Fully enclosed paper-based microfluidic devices using bio-compatible adhesive seals’, Microsyst. Technol., 2017, 24, pp. 15.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 78. Eddings, M.A., Johnson, M.A., Gale, B.K.: ‘NOTE: determining the optimal PDMS PDMS bonding technique for microfluidic devices’, J. Micromech. Microeng., 2015, 18, pp. 11711185.
    33. 33)
    34. 34)
      • 39. Shamsi, A., Shamloo, A., Mohammadaliha, N., et al: ‘High throughput blood plasma separation using a passive PMMA microfluidic device’, Microsyst. Technol., 2015, 22, pp. 18.
    35. 35)
    36. 36)
    37. 37)
      • 33. Liu, K., Xiang, J., Ai, Z., et al: ‘PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA’, Microsyst. Technol., 2016, 23, pp. 16.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 14. Sáenz, J.P.: ‘An Introduction to micro electro mechanical systems (MEMS)’, Semin. Nephrol., 2005, 13, pp. 155167.
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
      • 81. Daniel, A.D.C.: ‘Picosecond pulsed laser microstructuring of metals for microfluidics’, 2017.
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
    86. 86)
    87. 87)
    88. 88)
    89. 89)
      • 43. Bynum, W.: ‘A little history of science’ (Yale University Press, New Haven, 2012).
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5169
Loading

Related content

content/journals/10.1049/mnl.2018.5169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading