© The Institution of Engineering and Technology
Synthesis of hybrid carbon–nickel (C–Ni) nanocomposite was performed with [C60] fullerene and Ni hydroxide in an electric furnace at 700°C for 2 h. The resulting product was characterised by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and electron spin resonance spectroscopy. The catalytic reduction of 2-nitrophenol using the hybrid nanocomposite was investigated by ultraviolet–visible spectroscopy. Kinetic study showed that reduction of 2-nitrophenol in the presence of sodium borohydride with the hybrid C–Ni nanocomposite was followed a pseudo-first-order reaction law.
References
-
-
1)
-
1. Yeh, C.C., Chen, D.H.: ‘Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity’, Appl. Catal. B, 2014, 150, pp. 298–304 (doi: 10.1016/j.apcatb.2013.12.040).
-
2)
-
2. Chiou, J.R., Lai, B.H., Hsu, K.C., et al: ‘One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction’, J. Hazard. Mater, 2013, 248, pp. 394–400 (doi: 10.1016/j.jhazmat.2013.01.030).
-
3)
-
3. Wu, Z., Chen, J., Di, Q., et al: ‘Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol’, Catal. Commun., 2012, 18, pp. 55–59 (doi: 10.1016/j.catcom.2011.11.015).
-
4)
-
4. Maksod, I.E., Hegazy, E., Kenawy, S., et al: ‘Synthesis and characterization of nano-sized nickel catalyst supported on SiO2–Al2O3’, Appl. Surf. Sci., 2009, 255, (6), pp. 3471–3477 (doi: 10.1016/j.apsusc.2008.07.117).
-
5)
-
5. Ding, J., Chen, L., Shao, R., et al: ‘Catalytic hydrogenation of p-nitrophenol to produce p-aminophenol over a nickel catalyst supported on active carbon’, React. Kinet. Mech. Catal., 2012, 106, (1), pp. 225–232 (doi: 10.1007/s11144-011-0417-x).
-
6)
-
6. Maksoud, I.H.A.E., Saleh, T.S.: ‘The use of nano supported nickel catalyst in reduction of p-nitrophenol using hydrazine as hydrogen donor’, Green Chem. Lett. Rev., 2010, 3, (2), pp. 127–134 (doi: 10.1080/17518251003596143).
-
7)
-
7. Liu, H., Deng, J., Li, W., et al: ‘Synthesis of nickel nanoparticles supported on boehmite for selective hydrogenation of p-nitrophenol and p-chloronitrobenzene’, Catal. Lett., 2010, 137, (3-4), pp. 261–266 (doi: 10.1007/s10562-010-0362-8).
-
8)
-
8. Ji, Z., Shen, X., Zhu, G., et al: ‘Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties’, J. Mater. Chem., 2012, 8, (22), pp. 3471–3477 (doi: 10.1039/c2jm14680k).
-
9)
-
7. Zhang, S., Gai, S., He, F., et al: ‘In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction’, Nanoscale, 2014, 6, (19), pp. 11181–11188 (doi: 10.1039/C4NR02096K).
-
10)
-
10. Shen, Y.Y., Sun, Y., Zhou, L.N., et al: ‘Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction’, J. Mater. Chem. A, 2014, 9, (2), pp. 2977–2984 (doi: 10.1039/c3ta14502f).
-
11)
-
2. Wen, C., Yin, A., Dai, W.-L.: ‘Recent advances in silver-based heterogeneous catalysts for green chemistry processes’, Appl. Catal. B-Environ., 2014, 160-161, pp. 730–741 (doi: 10.1016/j.apcatb.2014.06.016).
-
12)
-
12. Shang, H., Pan, K., Zhang, L., et al: ‘Enhanced activity of supported Ni catalysts promoted by Pt for rapid reduction of aromatic nitro compounds’, Nanomaterials, 2016, 6, p. 103 (doi: 10.3390/nano6060103).
-
13)
-
13. Yang, Y., Li, X., Yang, F., et al: ‘New route toward integrating large nickel nanocrystals onto mesoporous carbons’, Appl. Catal. B, 2015, 165, pp. 94–102 (doi: 10.1016/j.apcatb.2014.09.056).
-
14)
-
14. Wang, A., Yin, H., Lu, H., et al: ‘Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol’, Langmuir, 2009, 25, (21), pp. 12736–12741 (doi: 10.1021/la901815b).
-
15)
-
15. Li, X.Z., Wu, K.L., Ye, Y., et al: ‘Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol’, Nanoscale, 2013, 5, pp. 3648–3653 (doi: 10.1039/c3nr00411b).
-
16)
-
16. Mazur, M.: ‘Electrochemically prepared silver nanoflakes and nanowires’, Electrochem. Commun., 2004, 6, (4), pp. 400–403 (doi: 10.1016/j.elecom.2004.02.011).
-
17)
-
17. Hu, Y., Zhao, T., Zhu, P., et al: ‘Preparation of large micron-sized monodisperse polystyrene/silver core–shell microspheres with compact shell structure and their electrical conductive and catalytic properties’, RSC Adv., 2015, 5, pp. 58–67 (doi: 10.1039/C4RA12475H).
-
18)
-
18. Bastús, N.G., Merkoçi, F., Piella, J., et al: ‘Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties’, Chem. Mater., 2014, 26, (9), pp. 2836–2846 (doi: 10.1021/cm500316k).
-
19)
-
19. Sharma, M., Mishra, A., Kumar, V., et al: ‘Green synthesis of silver nanoparticles with exceptional colloidal stability and its catalytic activity toward nitrophenol reduction’, Nano, 2016, 11, (4), p. 1650046 (doi: 10.1142/S1793292016500466).
-
20)
-
20. Naik, B., Hazra, S., Prasad, V.S., et al: ‘Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol’, Catal. Commun., 2011, 12, (12), pp. 1104–1108 (doi: 10.1016/j.catcom.2011.03.028).
-
21)
-
21. Wu, X.Q., Wu, X.W., Huang, Q., et al: ‘In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds’, Appl. Surf. Sci., 2015, 331, pp. 210–218 (doi: 10.1016/j.apsusc.2015.01.077).
-
22)
-
22. Hwang, C.G., Ho, K.S., Hoon, O.J., et al: ‘Reduction of aromatic nitro compounds on Pd colloids prepared by γ-irradiation’, J. Ind. Eng. Chem., 2008, 14, (6), pp. 864–868 (doi: 10.1016/j.jiec.2008.05.010).
-
23)
-
23. Chen, R., Wang, Q., Du, Y., et al: ‘Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation’, Chem. Eng. J., 2009, 145, (3), pp. 371–376 (doi: 10.1016/j.cej.2008.07.042).
-
24)
-
24. Feng, J., Wang, Q., Fan, D., et al: ‘Nickel-based xerogel catalysts: synthesis via fast sol–gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol’, Appl. Surf. Sci., 2016, 382, pp. 135–143 (doi: 10.1016/j.apsusc.2016.04.125).
-
25)
-
25. Rathore, P.S., Patidar, R., Rathore, S., et al: ‘Nickel nanoparticles as efficient catalyst for electron transfer reactions’, Catal. Lett., 2014, 144, (3), pp. 439–446 (doi: 10.1007/s10562-013-1168-2).
-
26)
-
26. Ji, T., Li, L., Wang, M., et al: ‘Carbon-protected Au nanoparticles supported on mesoporous TiO2 for catalytic reduction of p-nitrophenol’, RSC Adv., 2014, 4, pp. 29591–29594 (doi: 10.1039/C4RA04412F).
-
27)
-
27. Estrade-Szwarckopf, H.: ‘XPS photoemission in carbonaceous materials: a ‘defect’ peak beside the graphitic asymmetric peak’, Carbon, 2004, 42, (8-9), pp. 1713–1721 (doi: 10.1016/j.carbon.2004.03.005).
-
28)
-
28. Zhou, M., Chai, H., Jia, D., et al: ‘The glucose-assisted synthesis of a graphene nanosheet-NiO composites for high-performance supercapacitors’, New J. Chem., 2014, 38, pp. 2320–2326 (doi: 10.1039/c3nj01351k).
-
29)
-
29. Roro, K.T., Mwakikunga, B., Tile, N., et al: ‘Effect of accelerated thermal ageing on the selective solar thermal harvesting properties of multiwall carbon nanotube/nickel oxide nanocomposite coatings’, Int. J. Photoenergy, 2012, 2012, p. 678394 (doi: 10.1155/2012/678394).
-
30)
-
30. Ayodele, O.B., Lethesh, K.C., Gholami, Z., et al: ‘Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters’, J. Energy Chem., 2016, 25, (1), pp. 158–168 (doi: 10.1016/j.jechem.2015.08.017).
-
31)
-
31. Kabir, L., Mandal, A.R., Mandal, S.K.: ‘Polymer stabilized Ni–Ag and Ni–Fe alloy nanoclusters: structural and magnetic properties’, J. Magn. Magn. Mater., 2010, 322, (8), pp. 934–939 (doi: 10.1016/j.jmmm.2009.11.027).
-
32)
-
32. Odom, B., Hanneke, D., D'Urso, B., et al: ‘New measurement of the electron magnetic moment using a one-electron quantum cyclotron’, Phys. Rev. Lett., 2006, 97, (3), pp. 30801–30804 (doi: 10.1103/PhysRevLett.97.030801).
-
33)
-
33. Sun, J., Fu, Y., He, G., et al: ‘Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite’, Catal. Sci. Technol., 2014, 4, pp. 1742–1748 (doi: 10.1039/C4CY00048J).
-
34)
-
34. Bandosz, T.J., Petit, C.: ‘On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds’, J. Colloid Interface Sci., 2009, 338, (2), pp. 329–345 (doi: 10.1016/j.jcis.2009.06.039).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.0171
Related content
content/journals/10.1049/mnl.2018.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6