access icon free Understanding the performance of corona aged epoxy nano micro composites

Corona ageing of the epoxy nanocomposites surface exhibits a high influence on contact angle of the material. A reduction in corona inception voltage due to water droplet, upon corona ageing, is less with epoxy composites, which has Wollastonite as filler followed with nano-micro silica filler added epoxy composites. Charge accumulation studies indicate that charge retention time drastically reduces with corona aged epoxy composite specimen. Epoxy composites with Wollastonite as filler have shown higher mean charge lifetime. Adoption of laser induced breakdown spectroscopy (LIBS) technique for characterisation of samples is unique. Measure of threshold fluence and plasma temperatures through LIBS studies enables to classify the ageing condition of the composite material. Plasma temperature and threshold fluence are clear indicators to classify different materials. Plasma temperature is also an indicator of the hardness of the material. Epoxy composite with Wollastonite as filler is not affected by laser abrasion, which is in accordance with its superior performance with corona ageing, proving as discharge resistant material.

Inspec keywords: ageing; resins; plasma temperature; nanocomposites; abrasion; filled polymers; hardness; laser materials processing; silicon compounds

Other keywords: plasma temperatures; water droplet; charge retention time; epoxy composite specimen; contact angle; wollastonite; LIBS technique; ageing condition; laser induced breakdown spectroscopy; charge accumulation studies; material hardness; nanomicrosilica filler; laser abrasion; corona aged epoxy nanocomposites; corona aged epoxy microcomposites; composite material; corona inception voltage; charge lifetime

Subjects: Fatigue, brittleness, fracture, and cracks; Fatigue, embrittlement, and fracture; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Other heat and thermomechanical treatments; Laser materials processing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 16. Tomášková, T., Harvánek, L., Trnka, P., et al: ‘New epoxy composite insulating material with nano fillers and micro fillers of silica with higher thermal conductivity’. 2016 Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE), Papradno, 2016, pp. 8993.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 11. Iyer, G., Gorur, R.S., Richert, R., et al: ‘Evaluation of epoxy based nanodielectric for high voltage outdoor insulation’. 2010 IEEE Int. Symp. Electrical Insulation, San Diego, CA, 2010, pp. 15.
    14. 14)
    15. 15)
      • 1. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, United States, 2017), ISBN 9789814745024 - CAT# N11881.
    16. 16)
    17. 17)
      • 24. Miziolek, A.W., Palleschi, V., Schechter, I.: ‘Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications’ (Cambridge University Press, Cambridge, 2006).
    18. 18)
    19. 19)
      • 22. IEC publication, 60 112: ‘Recommended method for determining the comparative tracking index of solid insulating material under the moist condition’, 1972, 2nd edn.
    20. 20)
    21. 21)
      • 26. Knauel, J., Wagner, A., Puffer, R.: ‘Behavior of water droplets on polymeric insulation surfaces under hybrid field stress’. 2014 Annual Report Conf. Electrical Insulation and Dielectric Phenomena, Des Moines, IA, USA, 2015, pp. 243246.
    22. 22)
    23. 23)
      • 12. Tanaka, T.: ‘Interface properties and surface erosion resistance’, in Huang, X., Zhi, C. (Eds.): ‘Dielectric polymer nano composites’, (Springer, Heidelberg, 2010), pp. 113137, ISBN: 978-3-319-28236-7 (print).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 14. Praeger, M., Andritsch, T., Swingler, S.G., et al: ‘A simple theoretical model for the bulk properties of nanocomposite materials’. 2014 Annual Report Conf. Electrical Insulation and Dielectric Phenomena, Des Moines, IA, USA, 2014, pp. 699702.
    30. 30)
      • 29. Reynders, J.P., Jandrell, I.R., Reynders, S.M.: ‘Surface ageing mechanisms and their relationship to service performance of silicone rubber insulation’. 1999 Eleventh Int. Symp. High Voltage Engineering, London, 1999, vol. 4, pp. 5458.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.0164
Loading

Related content

content/journals/10.1049/mnl.2018.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading