access icon free Hysteresis modelling and feedforward compensation of piezoelectric nanopositioning stage with a modified Bouc-Wen model

Piezoelectric actuators (PEAs) are widely applied in various nanopositioning equipment. However, the strong hysteresis nonlinearity compromises the positioning accuracy. In this work, a novel modified Bouc-Wen (MBW) model with a polynomial function of the differential of the input is established for modelling the hysteresis nonlinearity of the PEA-actuated nanopositioning stages. The particle swarm optimisation algorithm is adopted to identify the parameters of the MBW model with a set of input–output experimental data. The obtained model with the corresponding identification parameters matches well the experimental data with 0.31% relative error. A feedforward compensator based on the obtained model is also applied to compensate the hysteresis nonlinearity. Experiments are conducted to validate the effectiveness of this approach, and the results show the great improvement of positioning accuracy of the stage.

Inspec keywords: nanopositioning; hysteresis; piezoelectric actuators; vibration control; feedforward; control nonlinearities; compensation; position control; particle swarm optimisation

Other keywords: piezoelectric nanopositioning stage; experimental data; 0.31% relative error; modified Bouc; positioning accuracy; piezoelectric actuators; strong hysteresis nonlinearity; feedforward compensation; MBW model; input–output; particle swarm optimisation algorithm; feedforward compensator; (MBW) model; nanopositioning equipment; corresponding identification parameters; PEA; polynomial function

Subjects: Spatial variables control; Piezoelectric devices; Optimisation techniques; Control system analysis and synthesis methods; Nonlinear control systems; Control technology and theory (production); Electric actuators and final control equipment

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 12. Feng, Z., Ling, J., Ming, M., et al: ‘A model-data integrated iterative learning controller for flexible tracking with application to a piezo nanopositioner’. Transactions of the Institute of Measurement and Control, 0142331217719958, 2017.
    5. 5)
      • 13. Guo, Y., Zhang, Z., Zhou, K., et al: ‘Robust control of rate-dependent hysteresis in smart actuators’. 2016 35th Chinese IEEE Control Conf. (CCC), Chengdu, China, 2016, pp. 837–841.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 14. Zhang, Z., Lu, J., Zhou, K., et al: ‘Dynamic hysteresis modeling and control of piezoelectric actuator based on H∞ robust disturbance observer’. 2016 35th Chinese. IEEE Control Conf. (CCC), Chengdu, China, 2016, pp. 897–902.
    16. 16)
    17. 17)
      • 28. Xu, Q., Tan, K.K.: ‘Feedforward control without modeling inverse hysteresis’ (Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems. Springer International Publishing, Switzerland, 2016), pp. 5775.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 3. Li, Y., Xu, Q.: ‘Modeling and performance evaluation of a flexure-based XY parallel micromanipulator’, Mech. Syst. Signal Proc., 2009, 44, (12), pp. 21272152.
    24. 24)
    25. 25)
    26. 26)
      • 11. Ling, J., Feng, Z., Yao, D., et al: ‘A position domain iteration learning control for contour tracking with application to a multi-axis motion testbed’. IEEE American Control Conf. (ACC), Boston, MA, USA, 2016, pp. 1247–1252.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0793
Loading

Related content

content/journals/10.1049/mnl.2017.0793
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading