http://iet.metastore.ingenta.com
1887

Influence of electric brush-plating voltage on hydrophobic behaviour of a cauliflower-like Ni coating surface

Influence of electric brush-plating voltage on hydrophobic behaviour of a cauliflower-like Ni coating surface

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effect of the plating voltage on the surface roughness, morphology, chemical composition and wettability of the Ni coatings was investigated by means of Laser scanning confocal microscopy, scanning electronic microscope, X-ray diffraction, energy-dispersive spectroscopy, and water contact angle measurements. The results indicate that the evolution of surface morphology on Ni coatings prepared by brush-plating depends strongly on the variation of plating voltage. The microstructure characterization shows that the typical hierarchical cauliflower-like structures was formed uniformly on the as-prepared Ni coatings. The combination of the porous morphology and hierarchical cauliflower-like structures plays a crucial role in improving the hydrophobic property. In absence of surface chemical modification, the Ni coatings exhibit an excellent hydrophobicity and have a high contact angle of 141 degree. Based on the Cassie-Baxier models, the relationship of two dimensionless geometrical parameters and the wetting property of the Ni coatings were investigated. It was demonstrated that to obtain the stable Cassie hydrophobic state, the aspect ratio and the water contact angle on the basal surface should be as large as possible and the spacing factor should be limited within a specific range for given aspect ratio and water contact angle on the basal surface.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 9. Cheng, K.-H., Chen, F.-J., Lee, C.-Y., et al: ‘Fabrication of Ni-Mn microprobe structure with low internal stress and high hardness by employing DC electrodeposit-ion’, Adv. Mater. Sci. Eng., 2014, 2014, p. 2014.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0441
Loading

Related content

content/journals/10.1049/mnl.2017.0441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address