access icon free Deep insight into linearity and NQS parameters of tunnel FET with emphasis on lateral straggle

Tunnel field-effect transistor (TFET) is considered to have superior device performance compared with DG-metal–oxide–semiconductor FET in terms of reduced off-state current and lower subthreshold swing. However, performance of a device solely depends on the accuracy in the fabrication process. This work presents a systematic methodology in small-signal-radio-frequency (RF) and linearity domain to analyse the effect of variation in lateral straggle caused by the variation tilt angle during ion implantation process. From previously published researches, it is intuitively established fact that the accurate evaluation of intrinsic components and estimation of linearity in short channel devices is crucial to access the range of application of the device. In this work, the authors have investigated the RF intrinsic parameter performances of a silicon double gate TFET having variation in lateral straggle from 1 to 5 nm. This study includes the analysis of non-quasi-static RF bias-dependent parameters such as intrinsic capacitances (C gs, C gd), gate-to-drain intrinsic resistance (R gd) and intrinsic time delay (τ). Similarly, the device linearity and reliability are investigated here in terms of higher-order transconductances (gm 2 and gm 3), VIP2, VIP3, IMD3, IIP3 and 1 dB compression point.

Inspec keywords: ion implantation; semiconductor device reliability; elemental semiconductors; field effect transistors; silicon; tunnel transistors

Other keywords: gate-to-drain intrinsic resistance; intrinsic capacitance; double gate TFET; reliability; lateral straggle variation; ion implantation process; lower subthreshold swing; intrinsic time delay; small-signal-radiofrequency methodology; size 1 nm to 5 nm; tilt angle variation; RF intrinsic parameter performance; RF methodology; NQS parameter; tunnel field-effect transistor; DG-metal-oxide-semiconductor FET; higher-order transconductance; reduced off-state current; nonquasistatic RF bias-dependent parameter; tunnel FET; Si

Subjects: Other field effect devices; Semiconductor doping; Reliability

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 30. Rogers, J., Plett, C.: ‘Radio frequency integrated circuit design’ (Artech House, 2003), pp. 2832.
    11. 11)
    12. 12)
    13. 13)
      • 17. Sentaurus TCAD Manuals: ‘Release H-2013.03’ (Synopsys Inc., Mountain View, CA, USA, 2013).
    14. 14)
    15. 15)
      • 18. Huang, Q., Huang, R., Zhan, Z., et al: ‘A novel Si tunnel FET with 36 mV/dec subthreshold slope based on junction’. Depleted-Modulation through Striped Gate Configuration, 2012 IEDM, pp. 8.5.18.5.4.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 4. Tsividis, Y.: ‘Operation and modeling of MOS transistor’ (McGraw-Hill, New York, 1999, 2nd edn.).
    21. 21)
    22. 22)
    23. 23)
      • 15. Ma, W., Kaya, S., Asenov, A.: ‘Study of RF linearity in sub-50 nm MOSFETs using simulations’, J. Solid-State Electron, 2004, 2, pp. 347352.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 29. Razavi, B.: ‘RF microelectronics’ (Prentice-Hall, NJ, 1998) Chapter 2.
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0326
Loading

Related content

content/journals/10.1049/mnl.2017.0326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading