Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Carrier relaxation time modelling of monolayer black phosphorene

Phosphorene as an innovative structure that can be exfoliated similarly to the graphene with a direct, inherent and suitable bandgap presents exceptional prospects for future generations of electronic devices. Phosphorene possess high carrier mobility, therefore, in this work its carrier statistics in the form of monolayer phosphorene in the non-degenerate limit is analytically modelled and the mobility relation with carrier relaxation time is investigated. Energy dispersion relation is used to develop and calculate the required parameters for carrier relaxation time model which is an important parameter in conduction theory. On the other hand, the dependency of carrier velocity and mobility to voltage, normalised Fermi energy and temperature are modelled. Finally, the carrier relaxation time as a function of carrier mobility is modelled and its dependency towards temperature and normalised Fermi energy is discussed. It is shown that the relaxation time is strongly dependent on the carrier mobility which increases by increasing the mobility.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 41. Datta, S.: ‘Quantum transport: atom to transistor’ (Cambridge University Press, 2005).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 42. Frey, J. (Ed.): ‘Ballistic transport in semiconductor devices’. 1980 Int. IEEE Electron Devices Meeting, 1980.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 40. Lundstrom, M., Guo, J.: ‘Nanoscale transistors: device physics, modeling and simulation’ (Springer Science & Business Media, 2006).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 31. Xia, F., Wang, H., Jia, Y.: ‘Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics’, Nat. Commun., 2014, 5.
    22. 22)
      • 35. Arora, V.K.: ‘Nanoelectronics: quantum engineering of low-dimensional nanoensembles’ (CRC Press, 2015).
    23. 23)
    24. 24)
      • 33. Li, P., Appelbaum, I.: ‘Electrons and holes in phosphorene’, Phys. Rev. B, 2014, 90, (11), pp. 112, doi: https://doi.org/10.1103/PhysRevB.90.115439.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 17. Delhaes, P.: ‘Graphite and precursors’ (CRC Press, 2000).
    34. 34)
    35. 35)
      • 38. Pierret, R.F., Neudeck, G.W.: ‘Advanced semiconductor fundamentals’ (Addison-Wesley, Reading, MA, 1987).
    36. 36)
      • 39. Mathewson, A., Rohan, J.: ‘Simulation of semiconductor processes and devices’ (Ireland, Springer, 2001).
    37. 37)
    38. 38)
    39. 39)
      • 24. Liu, H., Neal, A.T., Zhu, Z., et al: ‘Phosphorene: a new 2D material with high carrier mobility’, arXiv:14014133, 2014.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0242
Loading

Related content

content/journals/10.1049/mnl.2017.0242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address