access icon free Synthesis and characterisation of human serum albumin passivated CdTe nanocrystallites as fluorescent probe

The II–VI nanocrystallites (NCs) are well known as a great fluorescent probe, but one of the main problem is a toxic effect. Covering a semiconductor NCs by some materials or chemicals can reduce it, but change optical properties and functional characteristics of NCs. The potential ability of the CdTe NCs passivated by human serum albumin (HSA) to cancer cells bioimaging is examined. Performed research explored the interaction between the CdTe NCs and HSA, and fluorescence imaging efficiency of the NC–HSA bionanocomplex in comparison with the uncovered NCs. The secondary structure of the HSA is similar to the native form, which suggests a biocompatibility of the prepared bionanocomplex. The CdTe NCs located in osteosarcoma cancer cells show a high luminescence intensity. The light emission of the CdTe NCs connected with albumin is less than the pure NCs, but it is still satisfactory, and additionally have high resistance to photo-bleaching. It suggests that the CdTe NC–HSA bionanocomplex can be used as a fluorescent probe for cell labelling, tracking and other bioimaging applications.

Inspec keywords: molecular biophysics; cadmium compounds; nanostructured materials; proteins; II-VI semiconductors; biomedical optical imaging; nanomedicine; cancer; cellular biophysics; fluorescence

Other keywords: II-VI nanocrystallites; luminescence intensity; osteosarcoma cancer cell bioimaging; human serum albumin passivated CdTe nanocrystallites; photo-bleaching; fluorescence imaging; CdTe

Subjects: Patient diagnostic methods and instrumentation; Molecular biophysics; Cellular biophysics; Nanotechnology applications in biomedicine; Optical and laser radiation (biomedical imaging/measurement); Optical and laser radiation (medical uses)

References

    1. 1)
    2. 2)
      • 23. Savchuk, A.I., Stolyarchuk, I.D., Grygoryshyn, P.M., et al: ‘Interaction of human serum albumin with CdTe quantum dots probed by optical spectroscopy methods’. Proc. SPIE, 2013, 9066, pp. 16.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 28. Lakowicz, J.R.: ‘Principles of fluorescence spectroscopy’ (Springer Science & Business Media, New York, 2006), p. 277.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 7. Li, M., Li, F., He, Z., et al: ‘Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and rhodamine B’, J. Appl. Phys., 2014, 116, pp. 233106-1233106-6.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 30. Ivanov, A.I., Zhbankov, R.G., Korolenko, E.A., et al: ‘Infrared and Raman spectroscopic studies of the structure of human serum albumin under various ligand loads’, J. Appl. Spectr., 1994, 60, pp. 305309.
    28. 28)
      • 32. Coates, J.: ‘Interpretation of infrared spectra, a practical approach’, in Meyers, R.A. (Ed.): ‘Encyclopedia of analytical chemistry’ (John Wiley & Sons Ltd, Chichester, 2000), pp. 1081510837.
    29. 29)
    30. 30)
    31. 31)
      • 35. Walsh, G.: ‘Proteins: biochemistry and Biotechnology’ (John Wiley & Sons, Chichester, 2002), pp. 18–23.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0054
Loading

Related content

content/journals/10.1049/mnl.2017.0054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading