access icon free Fabrication of large-area ordered array of gold nanoparticles on c-Si substrate and its characterisation through reflectance spectra

Ordered arrays of substrate supported gold nanodots are fabricated on c-Si as substrate. Electron beam lithography followed by DC sputter coating was used for the fabrication of ordered gold nanodots over a 1 × 1 cm2 area on c-Si substrate. The fabricated ordered arrays of gold nanodots were characterised through the reflectance spectra. Reduction of 60.67% in reflectance was exhibited by ordered gold nanodots when compared with bare c-Si. For comparison, a random gold nanoparticle array of approximately same particle size was fabricated and the reflectance was compared with the ordered array. It was found that the reflectance of ordered array is 52.27% less than that of random array. This route is suitable for fabrication of large area ordered gold nanodots which has applications in photovoltaic industry.

Inspec keywords: sputtered coatings; electron beam lithography; sputter deposition; gold; nanofabrication; particle size; nanolithography; nanoparticles; reflectivity

Other keywords: Si; reflectance spectra; particle size; photovoltaic industry; substrate-supported gold nanodots; electron beam lithography; Au; ordered gold nanoparticle array; random gold nanoparticle array; DC sputter coating

Subjects: Nanofabrication using thin film deposition methods; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Thin film growth, structure, and epitaxy; Optical constants and parameters (condensed matter); Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Deposition by sputtering; Nanolithography

References

    1. 1)
    2. 2)
      • 8. Yoshino, M., Li, Z., Terano, M.: ‘Theoretical and experimental study of metallic dot agglomeration induced by thermal dewetting’, J. Micro and Nano Manuf. ASME, 2015, 3, (021004), pp. 19.
    3. 3)
    4. 4)
      • 1. Singh, Y.P., Jain, A., Kapoor, A.: ‘Localized surface plasmons enhanced light transmission into c-silicon solar cells’, J. Sol. Energy, 2013, Article ID 584283, p. 6.
    5. 5)
      • 16. Catchpole, K.R., Polman, A.: ‘Design principles for particle plasmon enhanced solar cells’, Appl. Phys. Lett., 2008, 93, (19113), pp. 14.
    6. 6)
    7. 7)
      • 2. Zhang, W., Ding, F., Li, W.D., et al: ‘Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting’, Nanotechnology, 2012, 23, (225301), p. 9.
    8. 8)
      • 10. Yamanaka, A., Osawa, H., Kurnia, W., et al: ‘Fabrication of ordered gold nano-dots array using nano plastic forming and self-assembly’, ICOMM, 2011, 9, pp. 16.
    9. 9)
      • 20. Refractive index database’, http://www.filmetrics.com/refractive-index-database. Retrieved on 28 June 2016.
    10. 10)
    11. 11)
      • 14. Mokkapati, S., Beck, F.J., Polman, A., et al: ‘Deisgning periodic arrays of metal nanoparticles for light-trapping applications in solar cells’, Appl. Phys. Lett., 2009, 95, (053115), p. 3.
    12. 12)
    13. 13)
    14. 14)
      • 4. Jung, M., El-Said, W.A., Choi, J.W.: ‘Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells’, Nanotechnology, 2011, 22, (235304), p. 8.
    15. 15)
      • 17. Pillai, S., Catchpole, K.R., Trupke, T., et al: ‘Surface plasmon enhanced silicon solar cells’, J. Appl. Phys., 2007, 101, (093105), pp. 18.
    16. 16)
      • 11. Yoshino, M., Osawa, H., Yamanaka, A.: ‘Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods’, J. Micromech. Microeng., 2011, 21, (125017), p. 9.
    17. 17)
    18. 18)
    19. 19)
      • 18. Beck, F.J., Polman, A., Catchpole, K.R.: ‘Tunable light trapping for solar cells using localized surface plasmons’, J. Appl. Phys., 2009, 105, (144310), pp. 18.
    20. 20)
      • 19. Goswami, A., Aravindan, S., Rao, P.V.: ‘Optimization of nanohole array parameters for improving the ultimate efficiency of nanohole structured c-Si solar cells’, Proc. IMechE N, J. Nanoeng. Nanosyst., 2015, doi: 10.1177/1740349915586622.
    21. 21)
    22. 22)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2016.0428
Loading

Related content

content/journals/10.1049/mnl.2016.0428
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading