© The Institution of Engineering and Technology
Synthesising gold nanoprobes in the near infrared (NIR) region is of particular interest in developing nanosensors due to the minimal light attenuation from biomolecules. Here, the controlled synthesis and tunability of gold nanostars’ two distinct localised surface plasmon resonances (LSPRs) at around 700 and 1100 nm is reported. By using UV–Vis–NIR absorption measurements and finite-difference time-domain calculations, the induction of the LSPR and the multipolar nature of the resonances have been investigated experimentally and theoretically. Simulation results demonstrate that large electric fields are confined at the tips of the branches, where the LSPR can be induced specifically by controlling the polarisation of the incident electric field. The surface-enhanced Raman scattering (SERS) capability of these dual plasmonic gold nanostars (DPGNS) has also been demonstrated using a Raman reporter, diethylthiatricarbocyanine iodide and high SERS enhancement factor (EF) of 2 × 107 is obtained with 785 nm excitation. With ease of synthesis, LSPR at NIR and high SERS EF, DPGNS demonstrated the capability to be an effective SERS substrate and the potential to elicit the highest SERS EF ever reported for gold nanoparticles, with further longer wavelength excitations at and beyond 1064 nm.
References
-
-
1)
-
1. Etchegoin, P.G., Le Ru, E.C.: ‘Basic electromagnetic theory of SERS’, 2011, pp. 1–37.
-
2)
-
2. Kelly, K.L., Coronado, E., Zhao, L.L., et al: ‘The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment’, J. Phys. Chem. B, 2003, 107, (3), pp. 668–677 (doi: 10.1021/jp026731y).
-
3)
-
3. Chung, T., Lee, S.-Y., Song, E.Y., et al: ‘Plasmonic nanostructures for nano-scale bio-sensing’, Sensors, 2011, 11, (11), pp. 10907–10929 (doi: 10.3390/s111110907).
-
4)
-
4. Jain, P.K., El-Sayed, M.A.: ‘Plasmonic coupling in noble metal nanostructures’, Chem. Phys. Lett., 2010, 487, (4), pp. 153–164 (doi: 10.1016/j.cplett.2010.01.062).
-
5)
-
5. Garcia, M.: ‘Surface plasmons in metallic nanoparticles: fundamentals and applications’, J. Phys. Appl. Phys., 2011, 44, (28), p. 283001 (doi: 10.1088/0022-3727/44/28/283001).
-
6)
-
6. You, E.-A., Zhou, W., Suh, J.Y., et al: ‘Polarization-dependent multipolar plasmon resonances in anisotropic multiscale Au particles’, ACS Nano, 2012, 6, (2), pp. 1786–1794 (doi: 10.1021/nn204845z).
-
7)
-
7. Samanta, A., Maiti, K.K., Soh, K., et al: ‘Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection’, Angew. Chem. Int. Ed., 2011, 50, (27), pp. 6089–6092 (doi: 10.1002/anie.201007841).
-
8)
-
8. Tian, F., Bonnier, F., Casey, A., et al: ‘Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape’, Anal. Methods, 2014, 6, (22), pp. 9116–9123 (doi: 10.1039/C4AY02112F).
-
9)
-
9. Bechelany, M., Brodard, P., Elias, J., et al: ‘Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization’, Langmuir, 2010, 26, (17), pp. 14364–14371 (doi: 10.1021/la1016356).
-
10)
-
10. Sakamoto, S., Philippe, L., Bechelany, M., et al: ‘Ordered hexagonal array of Au nanodots on Si substrate based on colloidal crystal templating’, Nanotechnology, 2008, 19, (40), p. 405304 (doi: 10.1088/0957-4484/19/40/405304).
-
11)
-
11. Nehl, C.L., Liao, H., Hafner, J.H.: ‘Optical properties of star-shaped gold nanoparticles’, Nano Lett., 2006, 6, (4), pp. 683–688 (doi: 10.1021/nl052409y).
-
12)
-
12. Raghavan, V., Connolly, J.M., Fan, H.M., et al: ‘Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer’, J. Nanomed. Nanotechnol., 2014, 5, (6), p. 1.
-
13)
-
13. Raghavan, V., Subhash, H., Breathnach, A., et al: ‘Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application’. Int. Society for Optics and Photonics, 2014, p. 89434J-1–89434J-13.
-
14)
-
14. Cheng, L.-C., Huang, J.-H., Chen, H.M., et al: ‘Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent’, J. Mater. Chem., 2012, 22, (5), pp. 2244–2253 (doi: 10.1039/C1JM13937A).
-
15)
-
19. Johnson, P.B., Christy, R.W.: ‘Optical constants of the noble metals’, Phys. Rev. B, 1972, 6, (12), pp. 4370–4379 (doi: 10.1103/PhysRevB.6.4370).
-
16)
-
16. Cai, J., Raghavan, V., Bai, Y.J., et al: ‘Controllable synthesis of tetrapod gold nanocrystals with precisely tunable near-infrared plasmon resonance towards highly efficient surface enhanced Raman spectroscopy bioimaging’, J. Mater. Chem. B, 2015, 3, (37), pp. 7377–7385 (doi: 10.1039/C5TB00785B).
-
17)
-
17. Xie, J., Lee, J.Y., Wang, D.I.: ‘Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution’, Chem. Mater., 2007, 19, (11), pp. 2823–2830 (doi: 10.1021/cm0700100).
-
18)
-
18. Hao, F., Nehl, C.L., Hafner, J.H., et al: ‘Plasmon resonances of a gold nanostar’, Nano Lett., 2007, 7, (3), pp. 729–732 (doi: 10.1021/nl062969c).
-
19)
-
19. Khoury, C.G., Vo-Dinh, T.: ‘Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization’, J. Phys. Chem. C, 2008, 112, (48), pp. 18849–18859 (doi: 10.1021/jp8054747).
-
20)
-
20. Wu, L.Y., Ross, B.M., Lee, L.P.: ‘Optical properties of the crescent-shaped nanohole antenna’, Nano Lett., 2009, 9, (5), pp. 1956–1961 (doi: 10.1021/nl9001553).
-
21)
-
21. Li, Z., Yu, Y., Chen, Z., et al: ‘Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance’, J. Phys. Chem. C, 2013, 117, (39), pp. 20127–20132 (doi: 10.1021/jp403308k).
-
22)
-
22. Moskovits, M.: ‘Persistent misconceptions regarding SERS’, Phys. Chem. Chem. Phys., 2013, 15, (15), pp. 5301–5311 (doi: 10.1039/c2cp44030j).
-
23)
-
23. Khlebtsov, N.G., Dykman, L.A.: ‘Plasmonic nanoparticles: fabrication, optical properties, and biomedical applications’, in Tuchin, V.V. (Ed.): ‘Handbook of photonics for biomedical science’ (CRC Press, Boca Raton, FL, 2010), pp. 37–82.
-
24)
-
24. Nikoobakht, B., Wang, J., El-Sayed, M.A.: ‘Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition’, Chem. Phys. Lett., 2002, 366, (1–2), pp. 17–23 (doi: 10.1016/S0009-2614(02)01492-6).
-
25)
-
25. Le Ru, E.C., Blackie, E., Meyer, M., et al: ‘Surface enhanced Raman scattering enhancement factors: a comprehensive study’, J. Phys. Chem. C, 2007, 111, (37), pp. 13794–13803 (doi: 10.1021/jp0687908).
-
26)
-
26. Samanta, A., Jana, S., Das, R.K., et al: ‘Wavelength and shape dependent SERS study to develop ultrasensitive nanotags for imaging of cancer cells’, RSC Adv., 2014, 4, (24), p. 12415 (doi: 10.1039/c3ra46208k).
-
27)
-
27. Jain, P.K., El-Sayed, M.A.: ‘Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing’, Nano Lett., 2008, 8, (12), pp. 4347–4352 (doi: 10.1021/nl8021835).
-
28)
-
28. Acimovic, S.S., Kreuzer, M.P., González, M.U., et al: ‘Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing’, ACS Nano, 2009, 3, (5), pp. 1231–1237 (doi: 10.1021/nn900102j).
-
29)
-
29. Greeneltch, N.G., Blaber, M.G., Schatz, G.C., et al: ‘Plasmon-sampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (λex = 1064 nm) studies’, J. Phys. Chem. C, 2012, 117, (6), pp. 2554–2558 (doi: 10.1021/jp310846j).
-
30)
-
30. McNay, G., Eustace, D., Smith, W.E., et al: ‘Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications’, Appl. Spectrosc., 2011, 65, (8), pp. 825–837 (doi: 10.1366/11-06365).
-
31)
-
31. Schatz, G.C., Young, M.A., Van Duyne, R.P.: ‘Electromagnetic mechanism of SERS’, in Kneipp, K., Moskovits, M., Kneipp, H. (Eds): ‘Surface-enhanced Raman scattering’ (Springer, 2006), pp. 19–45.
-
32)
-
32. Le, F., Brandl, D.W., Urzhumov, Y.A., et al: ‘Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption’, ACS Nano, 2008, 2, (4), pp. 707–718 (doi: 10.1021/nn800047e).
-
33)
-
33. Liao, P., Wokaun, A.: ‘Lightning rod effect in surface enhanced Raman scattering’, J. Chem. Phys., 1982, 76, (1), pp. 751–752 (doi: 10.1063/1.442690).
-
34)
-
34. Kearns, H., Shand, N., Smith, W., et al: ‘1064 nm SERS of NIR active hollow gold nanotags’, Phys. Chem. Chem. Phys., 2015, 17, (3), pp. 1980–1986 (doi: 10.1039/C4CP04281F).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2016.0095
Related content
content/journals/10.1049/mnl.2016.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6